

BUILD THE NEW NORMAL

Carrier 2nd Generation
VWV INVERTER SERIES

Cooling capacity : 39.5 ~ 532kW

Turn to the Experts

Since Willis Carrier invented the first air-conditioning system in 1902, Carrier has been a technology pioneer and the preferred choice of customers around the globe, providing highly efficient chillers as well as central and airside air-conditioning units for household and commercial applications. As a unit of United Technologies Corp., Carrier is the world's leading provider of heating, ventilation and air-conditioning (HVAC) and refrigeration equipment.

Contents

Indoor comfort Easy retrofitting Powerful control Exceptional reliability

- THE BEST OF BOTH WORLDS 03 Carrier AquaFlow[™] Variable Water Volume (VWV) System
 Leading Benefits 06
 Complete System Lineup 07
 Customer value 08 Design flexibility Energy efficiency
- Major Technical Parameters
 29

37

History ______

Carrier AquaFlow™ Variable Water Volume (VWV) System THE BEST OF BOTH WORLDS

Carrier's innovative AquaFlow[™] VWV System combines the benefits of conventional hydronic and VRF systems, providing superior indoor comfort and energy efficiency.

The AquaFlow[™] VWV System includes modular outdoor air-cooled chiller and heat pump unit with self adaptive technology to control the variable refrigerant evaporating temperature*, low-noise fan coil unit, heat recovery fresh air handling unit, VFD hydronic kit, networked indoor thermostat, and intelligent system manager.

Single system capacity: 39.5kW - 532kW

* Self adaptive variable water temperature / Self adaptive variable refrigerant evaporating temperature

	Cai	rrier AquaFlow™ VWV System		Conventional Hydronic Syst	em	Conventional VRF	
	Flexible	Max. indoor unit (IDU) / outdoor unit connectivity: 200%	\bigcirc	Case by case design on job basis	199	Max. indoor unit/outdoor unit connectivity: 130%	6
	Design	Max. pipe length: 400m Max. ODU / IDU height difference: 120m*	٢	Case by case design on job basis	9	Max. pipe length: 150m Max. ODU / IDU height difference: 50m	6
Expanding							
the benefits of		Temp control +/-0.5°C, humidity detect +/-5%	\bigcirc	No humidity control function	\odot	Air supplied too cold or too hot; no humidity control function	\bigcirc
conventional hydronic	Indoor Comfort	Complete anti-PM 2.5 solution for fresh air and indoor air	٢	Only fresh air handling unit with filter section	\bigcirc	No filter section for IDU	\bigcirc
systems		No risk of indoor refrigerant leakage	\bigcirc	No risk of indoor refrigerant leakage	٢	Potential risk of indoor refrigerant leakage	\bigcirc
	Easy retrofit	System changing conveniently via IDU adding or removing quickly	Û	System changing conveniently via IDU adding or removing quickly	Ö	Longer cycle if IDU changing and impact on others in same loop	6
	Easy Installa-	System centralized control	\bigcirc	No centralized control; no communication between IDU / ODU	6	System centralized control	Û
	tion and Mainte- nance	Energy metering and BA connection	٢	Extra hardware & software needed and substantial investment	<u>@</u>	Extra hardware & software needed and substantial investment	<u></u>
Expanding		40% higher system IPLV vs. conventional hydronic system, 10% higher system IPLV vs. VRF	Ũ	IPLV is 40% lower than the VWV system	6	IPLV is 10% lower than the VWV system	<u>@</u>
the benefits of conventional VRF	Grad	Self adaptive variable water temperature / Self adaptive variable refrigerant evaporating temperature Energy efficiency: grade 1(China GB)	Ũ	No variable refrigerant flow / variable refrigerant evaporating temperature Energy efficiency: grade 2 or below (China GB)	6	Variable refrigerant flow Energy efficiency: grade 1(China GB)	<u>@</u>
	Cost Savings	No cooling/heating capacity loss in long pipes, Outdoor unit optimized 10-20%**	٢	No cooling/heating capacity loss in long pipes (subject to appropriate design)	٢	Cooling capacity loss: 10% – 20% in long pipes	
		Self adaptive variable water flow	Ũ	Constant water flow speed	6	Not applicable	-
		100% fresh air effect, 25% fresh air operation cost	\bigcirc	100% fresh air effect, 100% fresh air operation cost	6	100% fresh air effect, 100% fresh air operation cost	\bigcirc

* Outdoor unit and hydronic kit sited above the indoor unit ** Within the recommended pipe length range

New Carrier AquaFlow™ VWV System

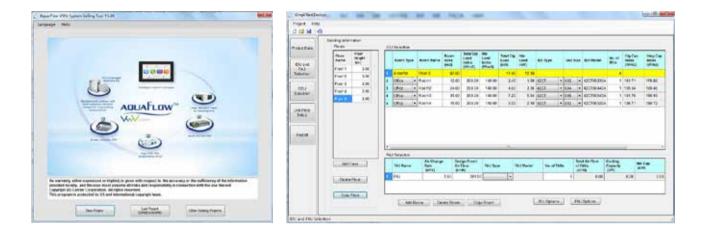
Besides its easy installation, auto-commissioning and integrated intelligent control, the Carrier Variable Flow System brings you unprecedented new control experience.

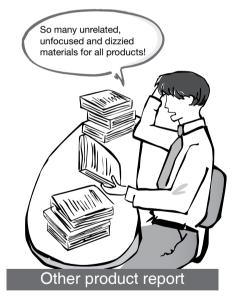
Project pr	ogress		Customer value		
	De	esign	 Packaged selection by components and system System level design validation Flexible layout for any kinds of building 		
Planning and business	Pu	ırchase	 Efficient investment based on optimized system capacity and roof installation Reduce finance pressure via phase-investment even room by room Simple process via one contact, secured lead-time 		
×		stallation	Only water pipe and electrical connections are required, eliminating the risk of water leakage, with installation fees close to conventional VRF system		
Construction	co	ommissioning	System automatically addressing, shorter commission cycle		
	Or	peration	 Lower system running cost derived from variable ODU control (compressor & fan), variable flow rate control, variable leaving temperature and heat recovery from fresh air unit Modularized outdoor unit w/ tandem compressor design can be backed up interchangeably. 		
		door air quality	 Sufficient fresh air according to CO2 sensor Continuous heating during defrosting (multi-outdoor units system) Indoor no refrigerant leakage risk 		
Service	Ma	anagement	 Integrated system with dedicated system controller (zone and schedule control) Build-in individual billing function, only add one power meter for each system 		
	Da	aily maintenance	• Rigid quality control by system level • Quick response by one to one correspondence		
After-sales service	sy sy	stem modification	 Flexible for system retrofit in future No impact with other users 		

* The case study is based on a specific office project with an air-conditioning area of 1200m².

Complete System Lineup

Single system capacity 39.5kw-532kw

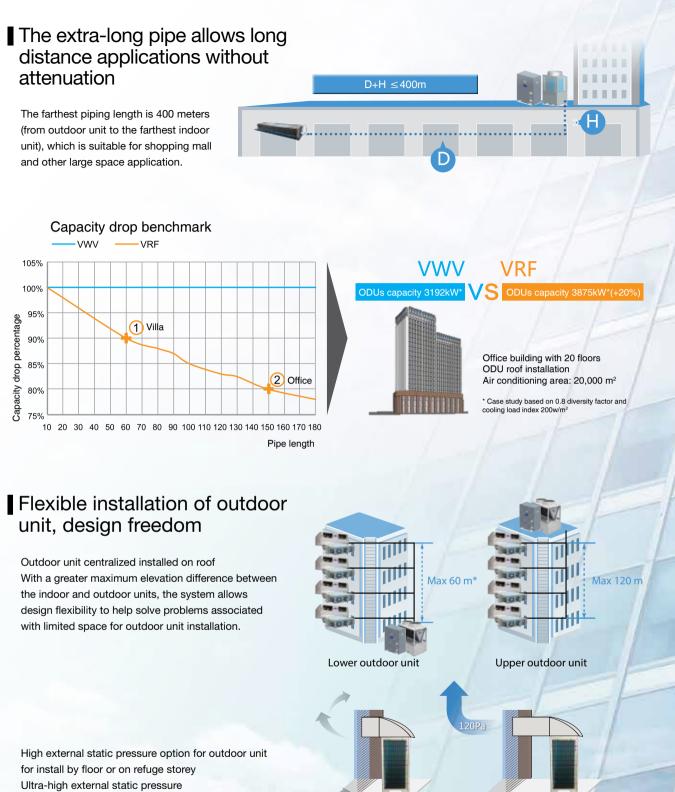

*Self adaptive variable water temperature / Self adaptive variable refrigerant evaporating temperature



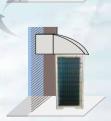
1 Design flexibility

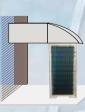
Offering one station system, less design workload

- » Validated system selection report for business matters
- » Components level report to review all facilities
- » Packaged hydronic kits offering: test proven performance, smaller foot print, shorter install cycle and less labor burden

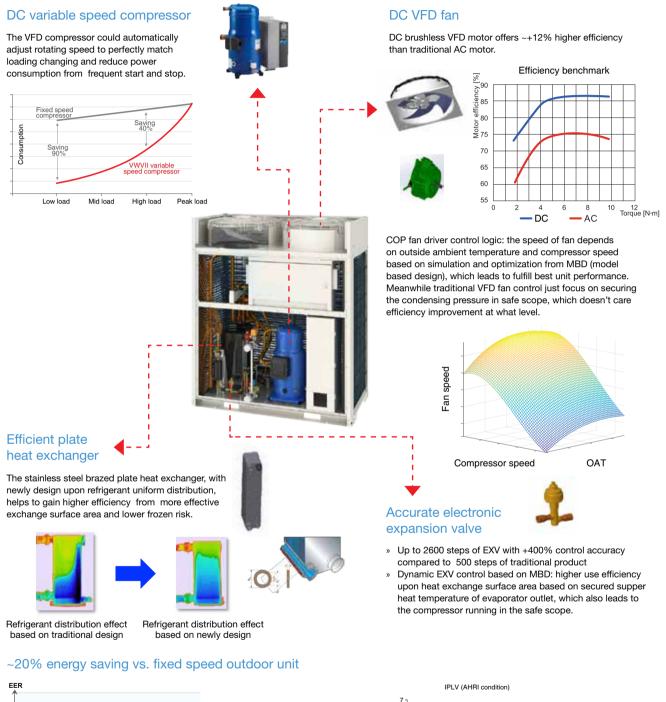


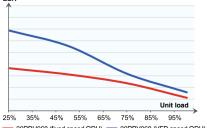
Mutiple configuration options are offered with a wide range of IDUs and ODUs


Wider workable load range for outdoor units (10% – 200%), lower initial cost and easier system upgrades.

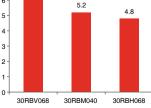


- It is possible to increase the external static pressure of
- the outdoor unit up to 120 Pa
- without disrupting heat transfer in either
- hierarchical or centralized configurations.


Low ESP, Air short circuit and interference

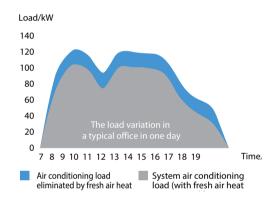


VWV high ESP, No interference for installation by floor


2 System efficiency

Efficient VDF outdoor unit—full DC VFD technique

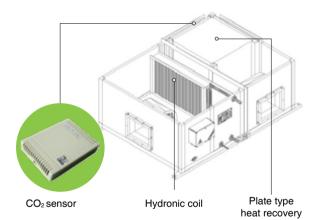
6

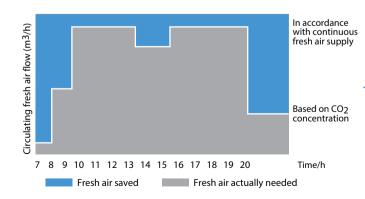

Tandem designed fixed speed outdoor unit-high part loading efficiency

Dual compressor shared single-circuit leads to high IPLV (up to 5.2), gaining double heat exchange surface once only one compressor runs. On the contrast, the IPLV of modular chiller is low (over 3.7) derived from dual compressor w/ individual circuit.

Efficient fresh air unit

Fresh air heat recovery Reduce system load


.....


Fresh air supplied on demand

CO₂ demand control

Carrier's new heat recovery fresh air handling unit (BFP) reduce ODU load 10%-15% (free cooling/heating for more than 50% of fresh air), saving initial investment.

With an integrated CO_2 concentration detection device, the heat recovery fresh air handling unit (BFP) continuously monitors indoor CO_2 levels and intelligently starts or stops units on demand so as to reduce the energy needed for fresh air processing by the outdoor unit and fresh air discharge fan. When a building has large variations in personnel density, a great deal of cooling or heating capacity will be wasted if fresh air is supplied everywhere and at all times at a preset level suitable to meet the peak demand of the highestdensity area.

* CO₂ can be used as an indicator of indoor air quality.
 * The calculation references GB 50189-2005 (China's national design standards for energy efficiency of public buildings), table B.0.6-2 (hour-by-hour personnel presence ratios).

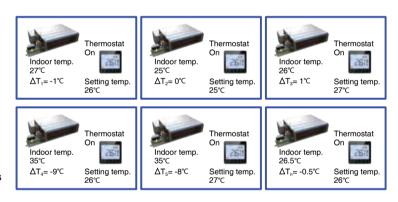
System efficiency-variable water temperature based on indoor comfort

Comparing part-load compressor operations

Power consumption drops rapidly under part-load conditions

VWV = Self adaptive variable leaving water temperature Power Consumption /Self adaptive variable refrigerant evaporation temperature 100% LgP LgP 80% VRF Power 60% Consumption 40% **VWV Power** Consumption 20% Te part loading =?°C Te full loading=4°C <u>0%</u> 25% 50% 75% 100% load ►H ۰H Part loading Full loading In a VRF system, the refrigerant evaporating temperature is set at 6°C Temperature 11 VWV Evaporation Temperature 9 7 25% -----> 50% -----> 75%) 100% 5 VRF Evaporation Temperature

Under part load conditions, the VWV's unique technologies reduce power consumption and increase operating efficiency by varying the leaving water temperature and refrigerant evaporation temperature.


Carrier Variable Water Temperature algorithm enables moment-to-moment control that matches building loads with precision, by monitoring timely in major:

$$\overline{\Delta T} = \frac{\sum_{i=1}^{N} (T_{Set i} - T_{Room i})}{i}$$

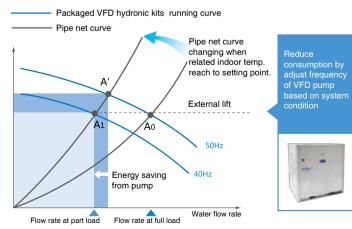
* IDU on / off

* Room temperature

* N is number of IDU that is ON, meanwhile remains constantly comfortable indoor climate.

50%

75%

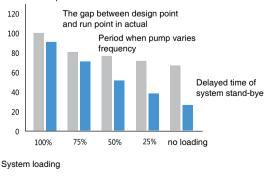

100%

load

3

25%

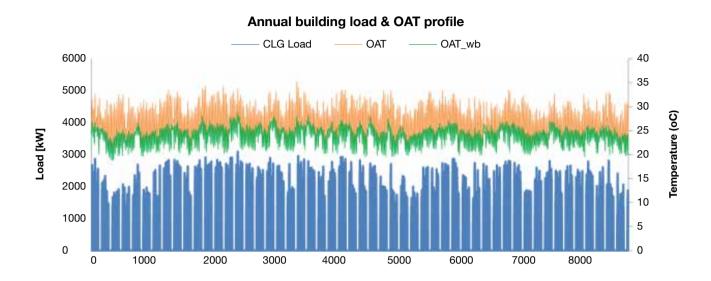
Efficient system- variable water flow


An Pump working point at full load

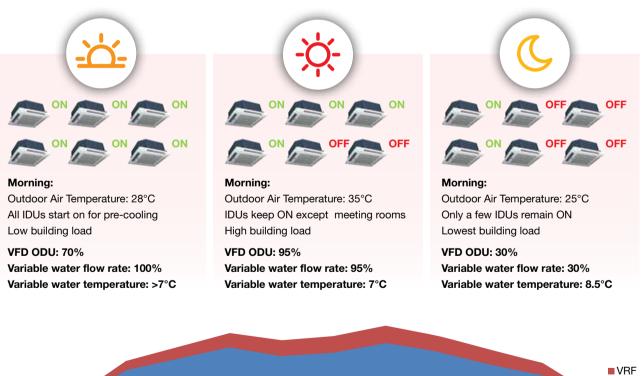
A' : Pump working point w/ constant frequency when partial outdoor and indoor units isolated at part-load

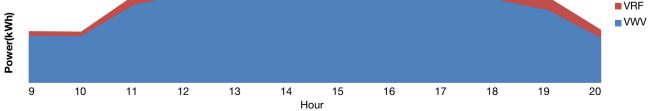
A1 : Pump working point w/ smaller frequency when partial outdoor and indoor units isolated at part-load

Variable flow rate control, leads to -67% energy saving of water pump


Power consumption index

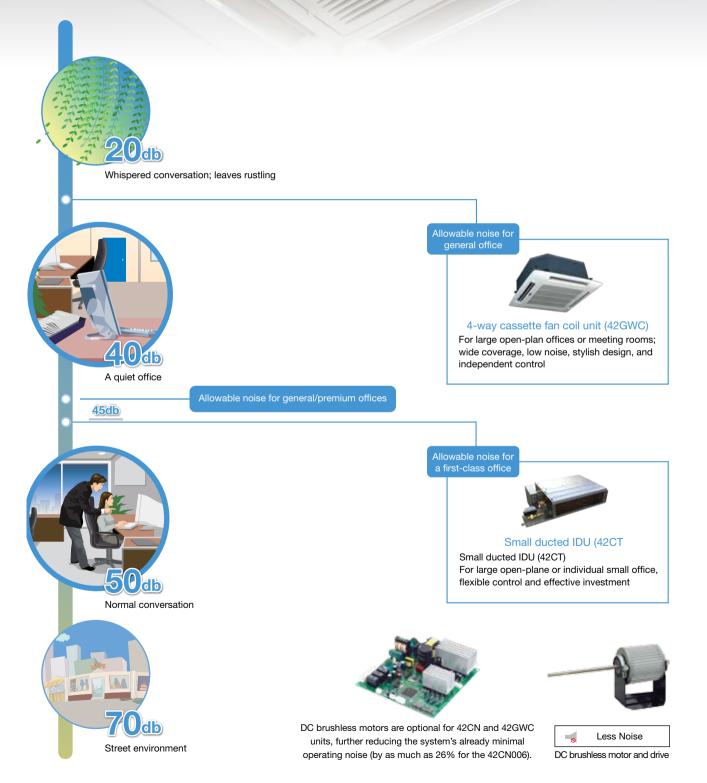
Fixed pump Variable pump


Case study


An office building with 7 floor in Kuala Lumpur, air-conditioning area 4200m2, indoor peak loading 3098kw, fresh air loading 150kw. System configuration: outdoor unit 30RBV068 (66.5kw)*49 sets, HK520*7 sets, 42CT00730*525 sets, BFPR50*14 sets.

Harmony in Three Variables

Compare to VRF, VWVII leads to -16.5% energy saving in full year (259,700kw*h)*



* Date source derived from Carrier internal case study

3 Indoor comfor

Low Indoor Noise

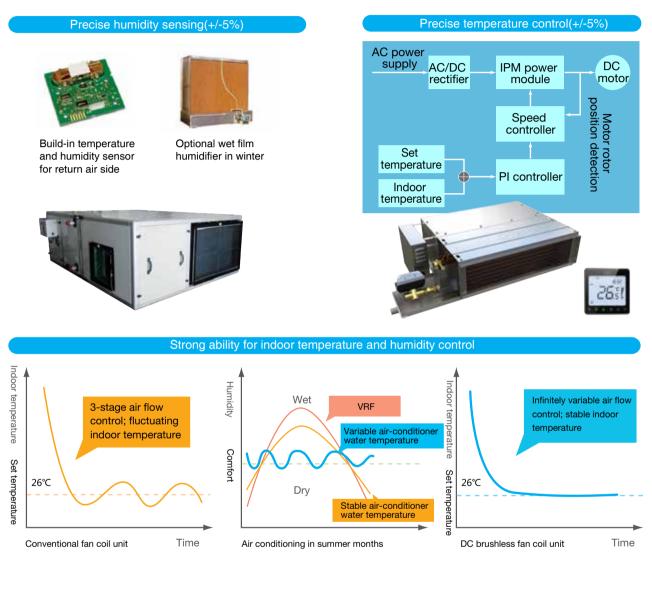
Low noise fan Bigger impeller and low entering speed fan structure equipped with NSK bearing leads to reduce the mechanical noise

DC brushless motor DC brushless motor can avoid low frequency noise and furtherly reduce running noise. Considering indoor unit operating at mid or low speed mostly, the effect of running noise is

The running noise of indoor unit can be decreased down to 22 dB(A) because of low noise fan and DC brushless motor

better than AC motor

Carrier patent design Silencer


the noise generated by the dynamic pressure of the outlet of the wind turbine is absorbed by built-in wing type foam spacer, which involved with the advanced computational fluid dynamics to simulate the optimization, and the performance of the unit is not affected. At the same time, greatly reduce the unit noise at high speed (over -3 dB(A))

The air flow rate and static pressure of the unit is not affected by silencer, the performance of some models is also slightly improved, the following is measured contrast by unit

Ducted indoor unit	Silencer	ESP (Pa)	Test flow rate (CMH)	Test noise(dBA)	Noise drop		
	No	30	1005.0	45.6			
Unit 1 (2 fans)	Yes	30	1011.6	42.2	3.4 dBA		
	No	30	1333.1	46.0			
Unit 2 (4 fans)	Yes	30	1351.4	42.5	3.5 dBA		
	No	12	1973.0	46.7			
Unit 3 (4 fans)	Yes	12	1954.0	43.7	3.0 dBA		

Maintaining Pleasant Indoor Temperture and Humidity

Powerful air conditioning doesn't mean better comfort, too cold in summer or too hot in winter leads to catch cold or serious water loss of the human body. Carrier VWV can offer better indoor comfort based on strong temperature and humidity control technology.

Guaranteeing Indoor Air Quality

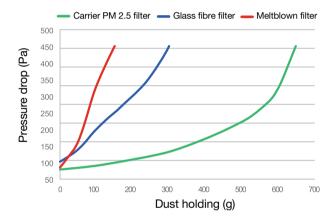
The heat recovery fresh air handling unit (BFP) intelligently monitors indoor CO2 concentration and supplies fresh air on demand, giving due consideration to both energy efficiency and comfort while also controlling the fan units to avoid negative indoor air pressure.

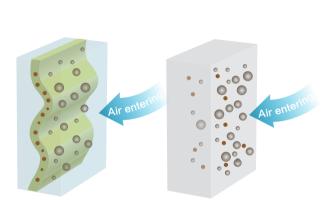
National CO ₂ density standard	VWV CO ₂ Status
≤0.1%(2000mg/m³)*	700±50PPM(1260±90mg/m ³)

* From GB/T 18883-2002 Indoor Air Quality Standard

Fresh air purifier (anti PM 2.5)

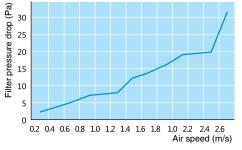
Optional fresh air purifier, including supply fan, primary filter and no charged medium filter


Nanoscale mechanical filter, uncharged. Anti particle smaller than PM 2.5 especially: sandwich structure and ripple type design of filter contribute to filtering area.



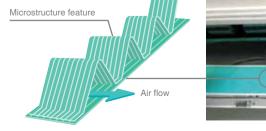
* Efficiency based on 0.1~2.5µm particle

Benchmark of pressure drop and dust holding



Indoor air purifier (anti- PM 2.5)

Optional HAF electrostatically charged media filter for ducted indoor unit (42CE/CN)


Efficient removal of PM2.5 particles

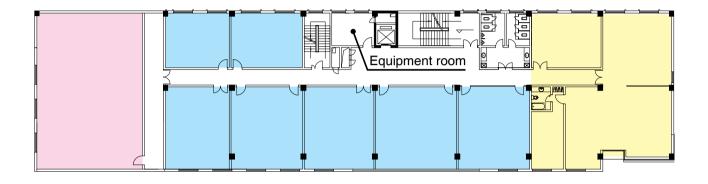
The unique electrostatic technology and microstructure technology, and to ensure stable effect of electrostatic filter, the filter can increase the effective area, more efficient capture and bearing micro particles. Test loop filter efficiency of PM2.5 is up to 98%.)

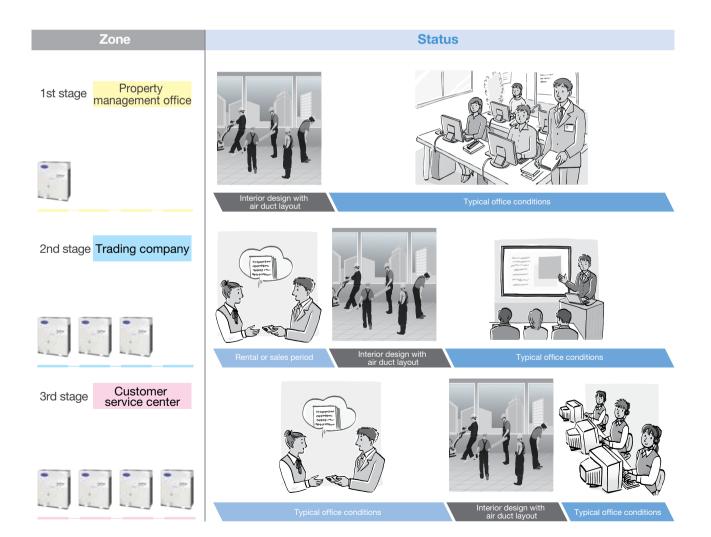
Low air flow pressure drop

The filter adopts the open channel structure, which ensures the high efficiency and low resistance, especially suitable for small ducted indoor unit w/ low static pressure

Resistance to mildew and moisture

The filter made of pure synthetic fiber material, which is non-toxic, non-detachment, resistance to mildew and moisture, can not lead to secondary pollution indoor.

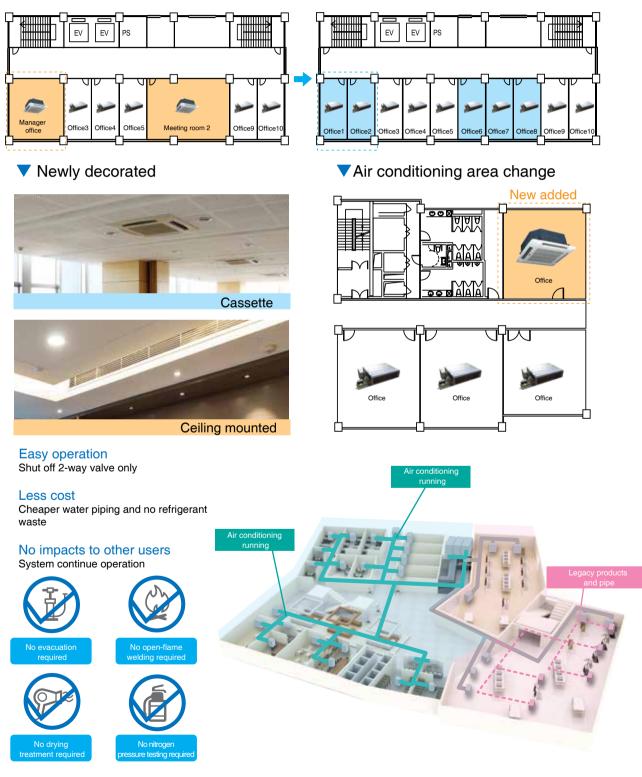

* Please select suitable model according to air speed and related pressure drop


4 Easy retrofitting

Multi-stage Installation to Spread Out Capital Investment

All indoor units can be installed first, followed by the outdoor units in batches, or the process can be reversed, with outdoor units deployed first and indoor units following in batches.

As shown in below case: developer can install outdoor unit for property management office firstly, then add related outdoor unit for trading company and customer service center step by step depending on leasing status.



More flexibility for changing pipe and products in future

For rental office building, we often face tenants changing, which will impact on re-decoration indoor, transforming of structure layout and system expansion.

Space rearrangement

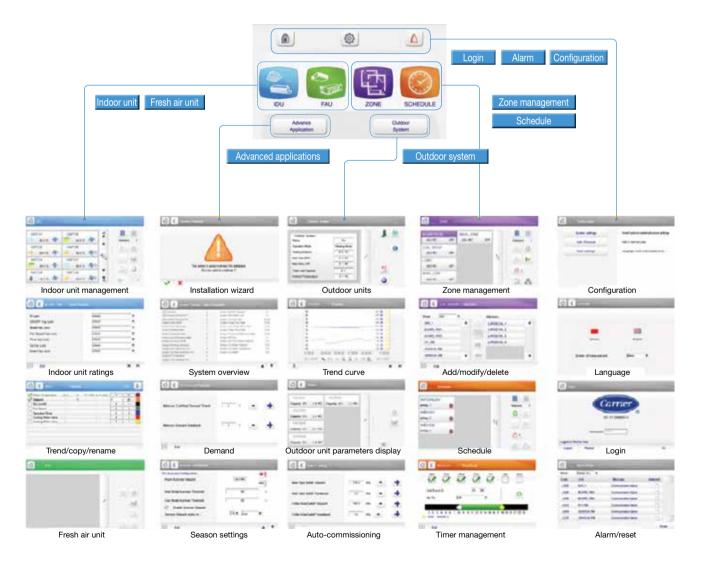
5 Powerful control

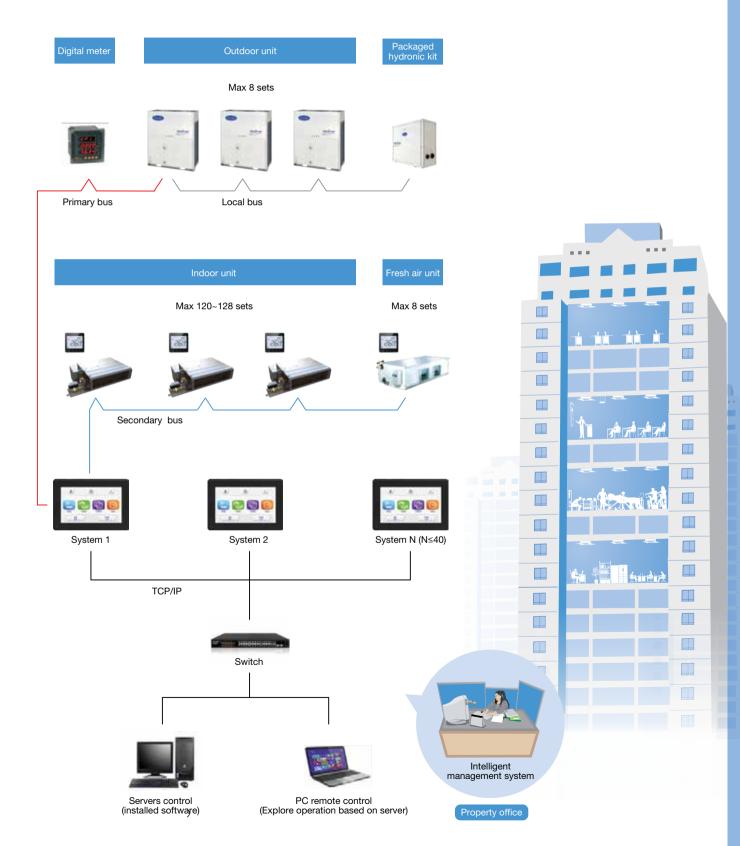
New Networked Thermostat

- » Easy operation with backlit LCD display and touch buttons» Multi-modes: cooling , heating, ventilation, dehumidifying,
- E-heating, floor heating
- » Option fan speed: high/mid/low/auto
- » Indoor temperature display and setting
- » Multiple colors available to complement interior design

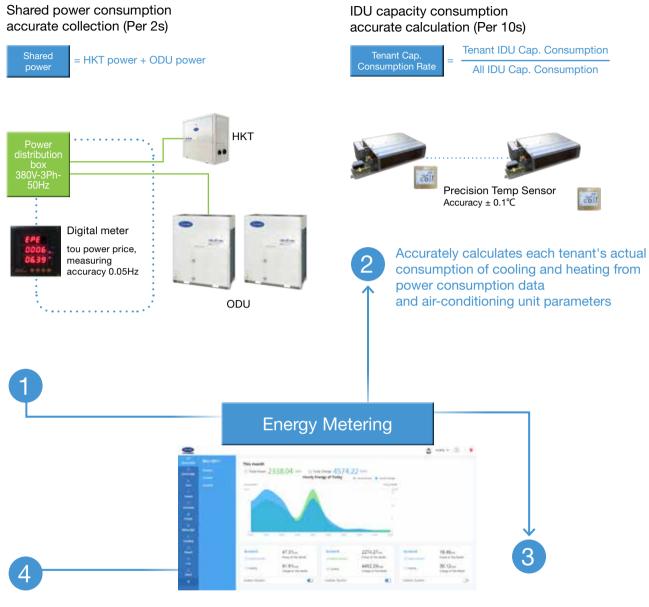
Intelligent System Manager

- » 7" color capacitor touch screen
- » Graphical touch-screen interface
- » Chinese and English languages
- » Zone control (up to 128 zones)
- » display and storage running data based on SD card
- » Schedule control (week/month/year)


- » Optional remote control for easy operation of multiple indoor units
- » support to allocate address of products manually or automatically
- » System keep running if one thermostat power off or damaged

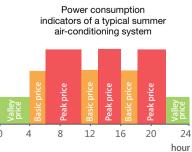


- » Build-in Modbus-IP protocol
- » Remote control and indoor unit locking functions
- » remote diagnosis and reset for products
- » several levels accouter for logo in



Powerful intelligent management system

System structure diagram


Precise energy metering

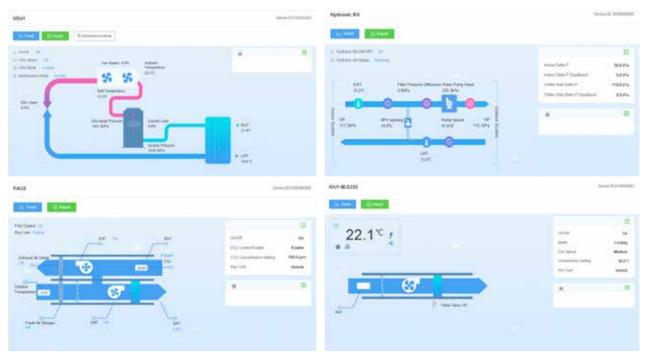
Tenant power consumption transform to Tenant bill

Electri		
Low	Total	
30	150	
30	150	
30	150	
30	150	
30	150	
30	150	
30	150	
30	150	
мв		0
	Low 30 30 30 30 30 30 30 30 30 30	30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150 30 150

Tenant cap. consumption transform to tenant power consumption (Per 10s)

Time	A Tenant	B Tenant	C Tenant	
	0.27	0.9	1.11	0
14:00~14:30(2013/8/9)	0.46	0	1.58	0
14:30~15:00(2013/8/9)	0.39	0	1.77	0
15:00~15:30(2013/8/9)	0	0	1.09	0.44
15:30~16:00(2013/8/9)	0.41	0.29	0	0.27
	0	0.44	0	0.53

Easy operation for admin team


» 1. Definition for detail information of tenants including combined unit cross system

Tenant information

🛱 Tenant name \star	Carrier		I Contact	Carrier		0	Location	West of	floor 5
≣ Tenant number	295023		且 Contact info.	1567295023		₽	System	System	
Billing date	30th		🗹 Email	We.bu@carrie	er.utc.com				
B Selected device				Key		Sy	stem ~	Tenant	 ✓ Search
System sele	ected			Device s	selected				
SYSTEM1		FAU1	FAU2	FAU3	FAU4		FAU5		FAU6
SYSTEM1		FAU7	FAU8	FAU9	FAU10		FAU1 ²	1	FAU12
SYSTEM1									
SYSTEM1		IDU1	IDU2	IDU3	IDU4		IDU5		IDU6
SYSTEM1		IDU7	IDU8	IDU9	IDU10		IDU11		IDU12
SYSTEM1		IDU13	IDU14	IDU15	IDU16		IDU17	,	IDU18
SYSTEM1		IDU19	IDU20	IDU21	IDU22		IDU23	3	IDU24
SYSTEM1		IDU25	IDU26	IDU27	IDU28		IDU29)	IDU30

Device selected: system 1-FAU3, system 1-FAU11, system 1-IDU2, system1-IDU16

» 2. Device information clear at a glance

24

» 3. Billing report with multi-type solve potential worries

> Building level report for admin department, easy management without omission

Item	Tenant	Peak power (kWH)	Normal power (kWH)	Valley power (kWH)	Peak charge (RMB)	Normal charge (RMB)	Valley charge (RMB)	Power (kWH)	Charge (RMB)	
1	Company A	1.03	1.52	18.08	1.13	3.04	11.75	20.63	15.92	
2	Company Y	1.18	1.37	16.27	1.3	2.74	10.57	18.82	14.61	
3	Company T	5.19	5.75	78.65	5.71	11.5	51.12	89.59	68.33	
4	Sum	7.4	8.64	113	8.14	17.28	73.45	129.03	98.86	
Building :	B Tower									
Billing cycle :	: 2017-08-01 - 2017-08-31									

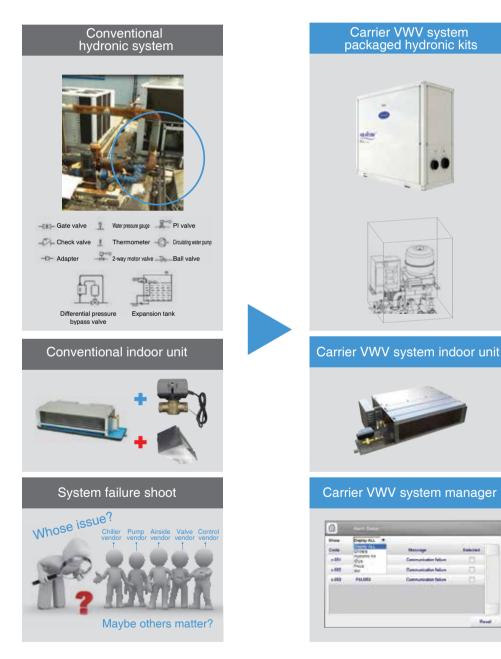
> Monthly or daily tenant level report with accurate information

Item	System	Device	Peak power (kWH)	Normal power (kWH)	Valley power (kWH)	Peak charge (RMB)	Normal charge (RMB)	Valley charge (RMB)	Power (kWH)	Charge (RMB)
1	System5	IDU2	0.11	0.12	1.2	0.12	0.24	0.78	1.43	1.14
2	System5	IDU9	0.56	0.51	6.22	0.62	1.01	4.04	7.29	5.68
3	System5	IDU16	0.5	0.73	8.71	0.55	1.47	5.66	9.94	7.68
4	Sum of Device	-	1.17	1.36	16.13	1.29	2.72	10.48	18.66	14.49
5	Sum of shared Device	-	0.14	0.01	0.01	0.09	0.01	0.02	0.16	0.12
6	Sum of shared Device	-	1.31	1.37	16.14	1.38	2.73	10.5	18.82	14.61
Tenant :	Company Y									
Billing cycle :	2017-08-01 - 2017-08-	2017-08-01 - 2017-08-31								

> Detail IDU running record to solve potential challenge from tenant

Item	Time	Time	Device ID	Tenant	Operation
60	8/4/2017 8:06:31 AM	IDU16	0100504016	Company Y	Turn on
86	8/4/2017 8:02:31 AM	IDU16	0100504016	Company Y	Turn off
112	8/4/2017 7:44:31 AM	IDU16	0100504016	Company Y	Turn on
142	8/4/2017 7:37:31 AM	IDU16	0100504016	Company Y	Turn off
164	8/4/2017 7:21:30 AM	IDU16	0100504016	Company Y	Turn on
193	8/4/2017 6:57:30 AM	IDU16	0100504016	Company Y	Turn off
251	8/3/2017 9:01:17 AM	IDU16	0100504016	Company Y	Turn on
263	8/3/2017 8:51:17 AM	IDU16	0100504016	Company Y	Turn off
274	8/3/2017 6:22:15 AM	IDU16	0100504016	Company Y	Turn on
287	8/3/2017 3:31:14 AM	IDU16	0100504016	Company Y	Turn off

6 Overall safety and reliability

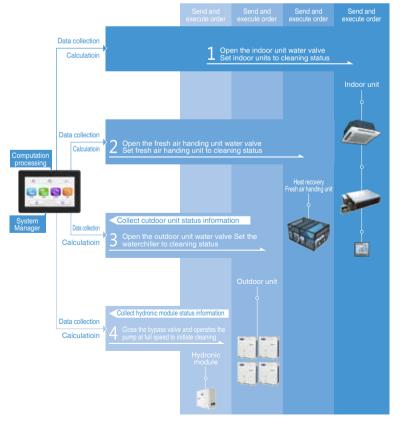

Integrated system, reliable performance and secured quality

Fragmental system

- » Components combined on site, compatibility concern and uncertain performance
- » Lots of hydronic kits installed on site, more leakage points
- » Failure shoot product by product, fussy and long cycle

Integrated system

- » Design and test by system, no compatibility issue and reliable performance
- Packaged hydronic kits preinstalled, secured guality and less leakage points
- » All alarm in one screen, quick and precise failure shoot



Auto-Cleaning Process

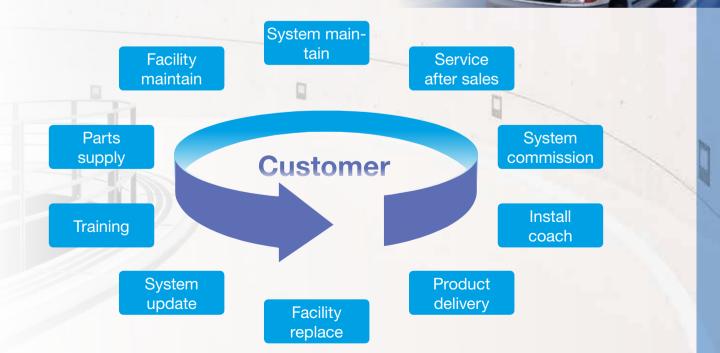
- » Auto-cleaning: The Carrier hydronic kit has an auto-cleaning function that is used to clean water pipes during commissioning and also at regular intervals to prevent fouling and ruating.
- » Automated pressure control: The system automatically calculates and sets optimal flow and lift without the need for operator intervention.

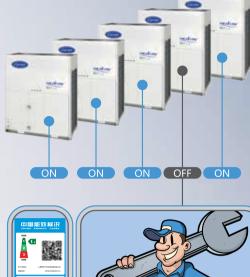
*When it comes to first time installation or restart system after long time power off, it should do auto-cleaning process to ensure product efficiency.

High efficiency and modularized outdoor unit, high reliability derived from back up unit

- » GB grade 1 product (30RQV068)
- » Modularly combined outdoor unit can be backed up interchangeably and in combination to simplify servicing.
- » Staggered equipment start-up to minimize the impact on the power grid.
- » Small cooling capacity gap and a combination of up to 8 units in 8
- specifications, catering to different needs.
- » Side-by-side installation.

Modularized design for complete back up Alternative running to balance product life

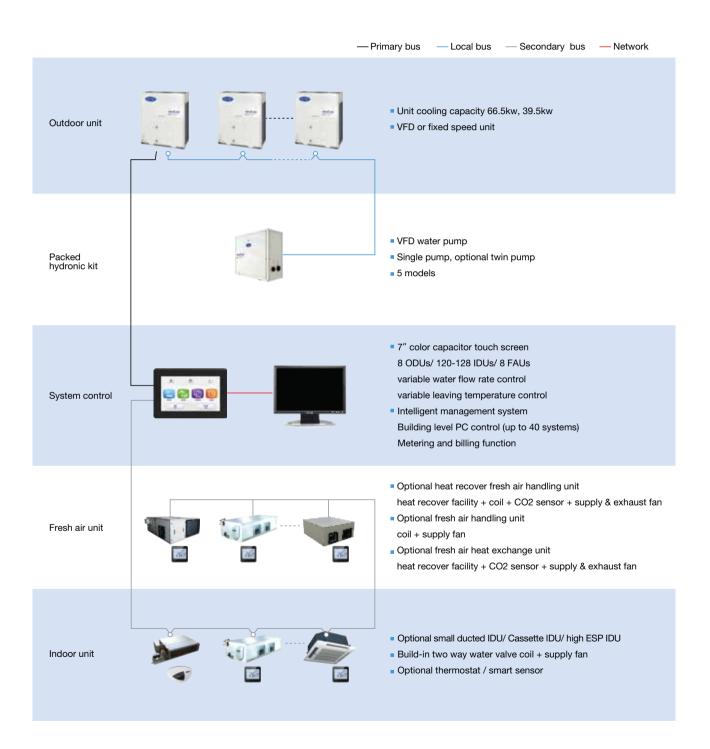

Fixed speed ODU (30RBH068) Dual compressor design for higher reliability


Eliminating Oil-return Issues

Conventional variable refrigerant flow (VRF) unit: refrigerant is sent from the outdoor unit to the indoor unit, so oil return may be inhibited through long pipes. Carrier AquaFlowTM VWV System : water flows between the outdoor and indoor units, eliminating the potential for compressor damage due to insufficient oil return.

Professional service, quick response

- » More professional analysis for failure and faster repairing due to well known for system and components
- » Carrier global service network, quick response



Technical Specifications

Carrier AquaFlow™ VWV System

System structure

Standard System Configuration

Cooling only outdoor unit system

Unit model	System cooling	Sets of outdoor	Packaged hydronic kit		System water flow rate	System external lift	Intelligent system
Unit model	capacity	unit	Model	Sets	m³/h	kPa	manager
SHSRBH065V*	66.5	1	HK080 S	1	11.5	213	
SHSRBH130V*	133	2	HK150 S/T	1	23	203	
SHSRBH195V*	199.5	3	HK210 S/T	1	34.5	230	
SHSRBH260V*	266	4	HK325 S/T	1	46	238	HSM*1
SHSRBH325V*	332.5	5	HK323 3/1	1	57.5	221	
SHSRBH390V*	399	6			69	227	
SHSRBH455V*	465.5	7	HK520 S/T	1	80.5	208	
SHSRBH520V*	532	8			92	178	

Note: * means the sets of VFD outdoor unit, optional from "0-8" which can not bigger than max outdoor unit sets in same system

Unit model	System cooling	Sets of outdoor	<u> </u>		System water flow rate	System external lift	Intelligent system
Unit model	capacity	unit	Model	Sets	m³/h	kPa	manager
SHSRBM080	79	2	HK080 S	1	13.6	218	
SHSRBM120	118.5	3	HK150 S/T	1	20.4	178	
SHSRBM160	158	4	HK210 S/T	-1	27.2	246	
SHSRBM200	197.5	5	HK2103/1	1	34	234	HSM*1
SHSRBM240	237	6			40.8	248	
SHSRBM280	276.5	7	HK325 S/T	1	47.6	239	
SHSRBM320	316	8			54.4	223	

Indoor equipment

	Indoor unit	Small ducted IDU (42CT), 4-way cassette IDU (42GWC) and high ESP IDU (DBFP/DFP), up to 120~128 sets for each system
Other important components	Fresh air handling unit	Heat recovery fresh air handling unit (BFP) and fresh air handling unit (DBFP/DFP) , up to 8 units for each system
	Thermostat	Heat recovery fresh air handling unit (BFPR), fresh air exchange unit (DXF) and fresh air handing unit (DFBP/ DFP), up to 8 sets for each system
(Options	1. HMI (00PSY143780200); 2. Remote control (CTCIR01); 3. Manual stop value (00PPY141440200)

VWV power option

1. Triple phase power

Туре	Product	Power: 3Ph - 380V-50Hz	Power: 3Ph - 400V-50Hz	Power: 3Ph - 415V-50Hz	Power: 3Ph - 380V-60Hz
Chiller	Air cooled chiller	30RBH068 / 30RBV068 / 30RMB040	30RBH068 / 30RBV068 / 30RMB040	30RBH068 / 30RBV068 / 30RMB040	30RBV068
Crimer	High ESP option	30RBH068 / 30RBV068 / 30RMB040	30RBH068 / 30RBV068 / 30RMB040	30RBH068 / 30RBV068 / 30RMB040	30RBV068
	HK080S-HK520S	√	1	\checkmark	
НК	HK150T-HK520T	1	\checkmark	\checkmark	\checkmark
	60m water pressure option	1	\checkmark	\checkmark	\checkmark
	BFPR10-BFPR80	1	\checkmark	\checkmark	\checkmark
Fresh air unit	BFPR PM 2.5 filter option	V	\checkmark	\checkmark	
	DXF1000PQ-DXF6000PQ	√	\checkmark	\checkmark	

2. Single phase power

Туре	Product	Power: 1Ph - 220V-50Hz	Power: 1Ph - 230V-50Hz	Power: 1Ph - 240V-50Hz	Power: 1Ph - 220V-60Hz
Fresh air unit	DBFP1-6/DFP2-4	\checkmark			
Tresit all utilit	DXF600SQ-DXF3000SQ	\checkmark			
Small ducted IDU	42CT_AC(002-014)	\checkmark			V
Sinai ducted IDO	42CT_DC(002-014)	\checkmark			V
High ESP ducted IDU	DBFP1-6/DFP2-4	\checkmark		\checkmark	
	42GWC-AC(003-008)	\checkmark		\checkmark	
4 way cassette IDU	42GWC-AC(010-014)	V			V
	42GWC-DC(003-008)	√			

Outdoor system paerformance data

Outdoor unit

Model		30RBV068	30RBH068	30RBM040				
Nominal Cooling Capacity	kW	66.5	66.5	39.2				
EER* (1)	kW/kW	4.10	3.70	3.77				
IPLV(China GB)	kW/kW	4.80	3.90	4.12				
Refrigerant		R4 ⁻	10A	R410A				
Charging	kg	12.5	10.5	12				
Compressor		VFD hermetic scroll compressor	Hermetic scroll compressor	Hermetic scroll compressor				
Quantity	set	1	2	2				
Capacity control step		stepless	2	2				
Min. capacity	%	33	50	50				
Control System		SP	IC6	SPIC6				
Condenser		Grooved copper tube	es and aluminum fins	Grooved copper tubes and				
Time of fem				aluminum fins				
Type of fan		Axia		Axial fan				
Quantity of Fan	DDM	2	2	1				
Fan Speed	RPM	150~1000	950	720				
Evaporator			eat exchanger 5.25	Brazed plate heat exchanger				
Water volume	1	5.78	4.31					
Nominal water flow	M3/h	11.5	11.5	6.8				
Nominal water-side pressure drop	kPa	67	67	63				
Max. water-side pressure	kPa	1000	1000	1000				
Inlet/Outlet Pipe		Victa		male thread				
Nominal Diameter	DN	50	50	40				
Electrical Data								
Nominal Power Supply		380V/415V-3Ph-50Hz380V-3Ph- 60Hz	380V/415V-3Ph-50Hz	380V/400V-3Ph-50Hz230V-3Ph- 60Hz				
Nominal unit current	A	44.1	48.1	36.5				
Unit length	mm	1585	1585	1240				
Unit width	mm	796	796	860				
Unit height	mm	1811	1811	1820				
operation weight	kg	542	489	360				
Noise level	dB(A)	66	66	64				
NPLV (2)	kW/kW	7.45	6.00	6.69				
IPLV (ARI)	kW/kW	6.00	4.80	5.18				
EER	kW/kW	3.35	3.18	3.29				
High ESP option								
Total Power Input	kw	21.3	21.4					
Total Power Input	A	36	41	Non-standard option				
Max extend pressure	Pa	120	120	Non-standard option				
Max fan speed	rpm	1450	1360					

(1) VWV EER condition: Indoor 27°C (DB)/19°C(WB) , Outdoor: 35°C

(2) WWV NPLV: 100% load Indoor 27°C(DB)/19°C(WB), Outdoor: 35°C; 75% load Indoor 27°C(DB)/19°C(WB), Outdoor: 26.7°C; 50% load Indoor 27°C(DB)/19C(WB), Outdoor:18.3°C; 25% load Indoor 27°C(DB)/19°C(WB), Outdoor: 12.8°C

Packaged hydronic kit

Singlea pump

 HK080S0100001THC
 HK150S1100001THC
 HK210S1100001THC
 HK325S1100001THC
 HK520S1100001YLC
 Model System cooling capacity range Nominal flow and hydronic kit 39.5-79kw 39.5-133kw 39.5-199.5kwC 39.5-332.5kw 39.5-532kw 13.6m3/h | 250KPa 23m3/h | 270KPa 34.5m³/h | 297KPa 57.5m³/h | 288KPa 92m³/h | 245KPa external lift VFD pump, differential pressure bypass valve, water replenishing valve, expansion tank (excluded if system endure pressure>20m), automatic relief valve, filter, etc. 1312×608×1186 Major components Dimension (L*W*H, mm) 820x420x998 1277×700×1186 Pump sets Nominal diameter of joint DN 60 DN 65 DN 80 DN 100 DN 100 Bypass pipe connector DN 42 DN 50 DN 50 DN 65 DN 65 Joint connection type Clamp Expansion tank capacity 12 L 35 L 50 L 80 L 80 L 380/400V-3Ph-50Hz; 380V-3Ph-60Hz Power supply 1.85kW 7.5kW Rated power 4kW 5.5kW 11kW Maximum operating current 5 A 8.2 A 10.9 A 14.5 A 21 A Net weight (kg) 130 229 262 288 369

Twin pump

Model	HK150T0100001THC	HK210T0100001THC	HK325T0100001THC	HK520T0100001YLC
System cooling capacity range	39.5-133kw	39.5-199.5kw	39.5-332.5kw	39.5-532kw
Nominal flow and hydronic kit external lift	23m ³ /h 270KPa	34.5m ³ /h 297KPa	57.5m³/h 288KPa	92m³/h 245KPa
Major components		, differential pressure bypass val		
Major components	(exclu	uded if system endure pressure>	20m), automatic relief valve, filte	er, etc.
Dimension (L*W*H, mm)	1404×798×1186	1462×8	78×1186	1462×918×1186
Pump sets		2 (100%	back up)	
Nominal diameter of joint	DN 65 DN 80 DN 100			DN 100
Bypass pipe connector	DN 50	DN 50	DN 65	DN 65
Joint connection type		Cla	amp	·
Expansion tank capacity	35 L	50 L	80 L	80 L
Power supply		380/400V-3Ph-50H	Hz; 380V-3Ph-60Hz	
Rated power	4kW	5.5kW	7.5kW	11kW
Maximum operating current	7.7 A	10.2 A	13.7 A	22A
Net weight (kg)	270	348	411	546

Note: 1. Please refer to Design, Installation and Commissioning Manual for Aqua-flow TM VWV System for nomenclature and detailed specifications. 2. The standard working pressure of packaged VFD hydronic kits (HK 080-520) is 20 meter ; for HK150-520 Carrier can offer 60 meter option without expansion tank, which should be installed on the top of system lop and is purchased by customer or is supplied by Carrier.

Technical parameters for heat recovery fresh air handing unit

Heat recovery fresh air handling unit BFPR

				2-Rov	v						
ι	Jnit model		BFPR10	BFPR15	BFPR20	BFPR25	BFPR30	BFPR40	BFPR50	BFPR60	BFPR80
Airflow	CMF	ł	1000	1500	2000	2500	3000	4000	5000	6000	8000
	Туре					Ceiling-ı	mounted				Horizontal
	Fresh air side	L (Pa)	135	189	161	116	160	248	321	362	240
Total pressure at outlet	Tresit all side	H (Pa)	266	233	251	265	253	425	365	449	417
Iotal pressure at outlet	Air discharge side	L (Pa)	128	84	90	107	103	244	205	284	141
	All discharge side	H (Pa)	174	234	244	168	217	312	386	428	317
Heat exchange rate	Sensible heat	Summer (%)	67.2	66.9	67.1	65.7	64.3	66.2	67.9	68.9	63.0
Heat exchange rate	Total heat	Summer (%)	53.3	53.3	53.7	52.2	51.3	52.6	53.8	54.5	50.5
	Fresh air side	L (kW)	0.29	0.42	0.57	0.66	0.79	1.66	1.83	2.96	3.32
	Fresh air side	H (kW)	0.41	0.42	0.63	0.82	1.11	1.83	1.99	3.14	3.66
Motor input power	Air discharge side	L (kW)	0.16	0.31	0.39	0.57	0.66	1.54	1.75	2.08	2.5
	Air discharge side	H (kW)	0.29	0.42	0.63	0.66	0.79	1.66	1.83	2.96	3.1
Total capacity	Cooling capacity	kW	10.3	15.9	21.9	26.5	31.2	42.4	55.3	68.2	92.7
Recovery capacity	Cooling capacity	kW	6	9.1	12.2	14.8	17.5	23.9	30.5	37.1	45.8
	Cooling capacity	kW	4.3	6.8	9.7	11.7	13.7	18.5	24.8	31.1	46.9
Coil cooling	Water flow rate	T/h	0.73	1.17	1.66	2.01	2.36	3.18	4.26	5.34	8.06
		LL (kg)	160	200	230	240	260	325	375	470	595
Naturaia		LH (kg)	160	200	230	240	265	325	375	475	610
Net weig	ILIC	HH (kg)	160	200	230	245	265	330	390	475	615
		HL (kg)	160	200	230	240	265	325	390	470	600

				4-Row	v						
I	Unit model		BFPR10	BFPR15	BFPR20	BFPR25	BFPR30	BFPR40	BFPR50	BFPR60	BFPR80
Airflow	CMF	I	1000	1500	2000	2500	3000	4000	5000	6000	8000
	Туре					Ceiling-	mounted				Horizontal
	Fresh air side	L (Pa)	111	161	131	82	122	203	275	316	196
Total pressure at outlet	Tresmail side	H (Pa)	243	205	221	231	215	380	320	403	373
iotal pressure at outlet	Air discharge side	L (Pa)	128	84	90	107	103	244	205	284	141
	All discharge side	H (Pa)	174	234	244	168	217	312	386	428	317
Heat exchange rate	Sensible heat	Summer (%)	67.2	66.9	67.1	65.7	64.3	66.2	67.9	68.9	63.0
neat exchange rate	Total heat	Summer (%)	53.3	53.3	53.7	52.2	51.3	52.6	53.8	54.5	50.5
	Fresh air side	L (kW)	0.29	0.42	0.57	0.66	0.79	1.66	1.83	2.96	3.32
Motor input power	Fresh air side	H (kW)	0.41	0.42	0.57	0.82	.82 1.11 [·]		1.99	3.14	3.66
	Air discharge side	L (kW)	0.16	0.31	0.39	0.57	0.66	1.54	1.75	2.08	2.5
	All discharge side	H (kW)	0.29	0.42	0.63	0.66	0.79	1.66	1.83	2.96	3.1
Total capacity	Cooling capacity	kW	15.5	23.3	31.3	38.2	45.2	60.2	70.3	86.8	119.7
Recovery capacity	Cooling capacity	kW	6	9.1	12.2	14.8	17.5	23.9	30.5	37.1	45.8
Coil cooling	Cooling capacity	kW	9.5	14.2	19.1	23.4	27.7	36.3	39.8	49.7	73.9
Coll Coolling	Water flow rate	T/h	1.64	2.43	3.28	4.01	4.76	6.24	6.84	8.53	12.7
		LL (kg)	165	205	235	245	270	335	385	485	615
Net weig	abt	LH (kg)	165	205	235	250	270	335	390	490	630
INEL WEI	grit	HH (kg)	165	205	235	250	275	340	400	485	635
		HL (kg)	165	205	235	250	270	335	400	485	620
1.1.24		DEDD40	DEDD45	DEDDO					DEDDEO	DEDDOO	DEDDOO
Unit mo	baei	BFPR10	BFPR15	BFPR20 BFPR25 BFPR30		-H3U E	FPR40	BFPR50	BFPR60	BFPR80	

Uni	t model		BFPR10	BFPR15	BFPR20	BFPR25	BFPR30	BFPR40	BFPR50	BFPR60	BFPR80
	L	mm	1450	1520	1610	1660	1750	1970	2130	2300	2430
Outline dimensions	W	mm	960	1120	1220	1180	1180	1370	1520	1710	1800
	Н	mm	520	580	640	700	770	770	770	770	1220

Build-out purifier option of BFPR

Unit model	BFPR10	BFPR15	BFPR20	BFPR25	BFPR30	BFPR40	BFPR50	BFPR60	BFPR80
Air flow rate	1000	1500	2000	2500	3000	4000	5000	6000	8000
Power source (V)		·			380V/3P/50Hz			·	
Rated power (kW)	0.2	0.32	0.37	0.55	0.75	1.0	1.5	2.2	3.8
Input power (kW)	0.38	0.65	0.64	0.84	1.1	1.6	2.0	3.1	62.1
Current (A)	0.8	1.3	1.21	1.6	2.3	3.0	3.9	5.9	7.8
Primary filter level	G3	G3	G3	G3	G3	G3	G3	G3	G3
Medium filter level	F7	F7	F7	F7	F7	F7	F7	F7	F7
Weight (kg)	45	60	65	85	95	110	135	145	165
Width (mm)	431	635	635	822	1026	1230	1128	1230	1230
Length (mm)	1130	1200	1240	1280	1320	1360	1360	1480	1480
Height (mm)	480	480	582	582	582	582	684	684	871

Summertime calculations based on: outdoor conditions of 35°C DBT and 59.1% RH, indoor conditions of 27°C DBT and 50% RH, and inlet/outlet water temperature of 7°C/12°C.

Fresh air unit performance data

Fresh air handling unit (suspending AHU)

Model	Air flow rate (m ³ /h)	Width (unit + control box) ×length×height	Motor kW-pole	Input power (kW)	Fan /motor sets	ESP (Pa)	TP (Pa)	Cooling capacity (kW)	Chilled water flow rare(l/s)	Cooling WDP (Kpa)	Unit weight (kg)	Noise level (dB(A))
DBFP010L3X	1000	(680+154)×986×380	0.175-4	0.34	1/1	130	234	12.6	0.6	53.4	46	52
DBFP010H3X	1000	(000+134)×380×380	0.275-4	0.44	1/ 1	220	321	12.0	0.0	55.4	47	55
DBFP015L3X	1500	(875+154)×986×380	0.275-4	0.44	1/1	115	227	19	0.9	50.4	53	55
DBFP015H3X	1500	(873+134)×380×380	0.425-4	0.79	1/1	215	320	15	0.9	50.4	55	58
DBFP020L3X	2000	(872+150)×986×500	0.35-4	0.63	1/1	195	300	25.3	1.2	53.7	63	56.5
DBFP020H3X	2000	(072+130)×300×300	0.55-4	0.84	1/1	280	381	20.0	1.2	50.7	64	59.5
DBFP025L3X	2500	(1018+150)×986×500	0.45-4	0.83	1/1	165	265	31	1.5	53.2	67	60
DBFP025H3X	2300	(1018+130)×980×300	0.55-4	0.84	1/1	250	356	51	1.5	55.2	70	61
DBFP030L3X	3000	(1166+150)×986×500	0.65-4	1.09	1/1	120	250	38.7	1.9	87.9	75	62
DBFP030H3X	3000	(1100+130)×360×300	0.65-4	1.09	1/1	200	330	30.7	1.5	07.5	75	62
DBFP040L3X	4000	(1458-150)-086-500	0.35-4X2	0.63X2	2/2	185	300	53.4	2.6	86.8	108	58
DBFP040H3X	4000	(1458+150)×986×500	0.55-4X2	0.84X2	2/2	250	381	55.4	2.0	00.0	112	61
DBFP050L3X	5000	(1752 - 150)086500	0.45-4X2	0.83X2	2/2	160	265	64.1	3.1	81.7	123	60.5
DBFP050H3X	5000	(1752+150)×986×500	0.55-4X2	0.84X2	2/2	250	356	04.1	3.1	01.7	127	61.5
DBFP060L3X	6000	(2044+150)×986×500	0.65-4X2	1.09X2	2/2	150	250	78.1	3.7	104	134	62.5
DBFP060H3X	0000	(2044+150)×980×500	0.65-4X2	1.09X2	2/2	220	330	/ 0.1	5.7	104	138	63.5
DBFP010L5X	1000	(690, 150), 096, 290	0.175-4	0.34	1/1	90	234	15.8	0.8	44	49	52
DBFP010H5X	1000	(680+150)×986×380	0.275-4	0.44	1/1	175	321	15.0	0.8	44	50	55
DBFP015L5X	1500	(875+150)×986×380	0.275-4	0.44	1/1	70	227	24	1.2	57.7	56	55
DBFP015H5X	1500	(875+150)×986×380	0.425-4	0.79	1/1	170	320	24	1.2	57.7	58	58
DBFP020L5X	2000	(872+150)×986×500	0.35-4	0.63	1/1	160	300	31.4	1.5	46.8	67	56.5
DBFP020H5X	2000	(872+150)×980×500	0.55-4	0.84	1/ 1	230	381	31.4	1.5	40.0	68	59.5
DBFP025L5X	2500	(1018,150),0000,000	0.45-4	0.83	1/1	140	265	39.7	1.9	58.9	75	60
DBFP025H5X	2500	(1018+150)×986×500	0.55-4	0.84	1/1	210	356	39.7	1.9	56.9	75	61
DBFP030L5X	3000	(1166+150)×986×500	0.65-4	1.09	1/1	85	250	49.5	2.4	101.1	81	62
DBFP030H5X	3000	(1100+150)×980×500	0.65-4	1.09	1/1	150	330	49.5	2.4	101.1	81	62
DBFP040L5X	1000	(1459.150)080500	0.35-4X2	0.63X2	0/0	150	300	05 F	2.1	01.0	115	58
DBFP040H5X	4000	(1458+150)×986×500	0.55-4X2	0.84X2	2/2	215	381	65.5	3.1	81.6	119	61
DBFP050L5X	5000	(1750 - 150)	0.45-4X2	0.83X2	0/0	120	265	80.4	3.8	76.5	129	60.5
DBFP050H5X	5000	(1752+150)×986×500	0.55-4X2	0.84X2	2/2	210	356	00.4	3.0	/0.0	133	61.5
DBFP060L5X	6000	(2044 - 150) - 000 - 500	0.65-4X2	1.09X2	0/0	115	250	08.7	47	100.0	142	62.5
DBFP060H5X	6000	(2044+150)×986×500	0.65-4X2	1.09X2	2/2	185	330	98.7	4.7	109.9	146	63.5

Rated condition: Cooling- entering air temperature of 35°C DBT and 28°C WBT; entering water temperature of 7°C.

Note: 1. Connect position- left connect, when it comes to face inlet vent and the coil connector is on the left of AHU; opposition is right connect.

2. Digital number 8 means external pressure (H- high, L – low); digital number 9 means cooling capacity (3- standard capacity, 5- high capacity).

3. Input power means total input power by unit level.

11	Model	Width (unit + control box) a*length*height	Air flow rate (m³/h)	ESP (Pa)	TP (Pa)	Input power (kW)	Unit weight (kg)	Noise level (dB(A)
	DFP020LX	(1018+154)×986×380	2000	95	297	0.79×1	65	58.2
	DFP020HX	(1010+134)×900×300	2000	65	297	0.79×1	67	58.2
	DFP030LX	(1458+154)×986×380	3000	130	320	0.79×2	92	58.5
	DFP030HX	(1456+154)×960×360	3000	100	320	0.79×2	95	58.5
	DFP040LX	(1752+154)×986×380	4000	85	297	0.79×2	105	60
	DFP040HX	(1752+154)×960×360	4000	55	297	0.79×2	109	60

Note: 1. Unit capacity refer to DBFP(X) w/ same air flow rate.

2. Digital number 7 means external pressure (H- high, L - low).

3. Input power means total input power by unit level.

Indoor unit performance data

Small ducted indoor unit

	2 rows coil unit											3 r	ows	coil u	nit				4 rows coil unit									
Content	Model	002	003	004	005	006	007	008	002	003	004	005	006	007	008	010	012	014	002	003	004	005	006	007	008	010	012	014
	High	340	510	680	850	1020	1190	1360	340	510	680	850	1020	1190	1360	1700	2040	2380	340	510	680	850	1020	1190	1360			
Air flow rate	Mid	270	400	530			940				530								270								1610	
(CMH)	Low	200	300	400	500	600	700	800																			1200	
Coolina	Total	1900	2950	3600															2660								13000	
capacity (W)	Sensible	1440	2190	2770	3450	4130	4790	5520	1630	2390	3110	3810	4580	5280	6140	7300	8610	9830	1810	2560	3300	4010	4890	5560	6550	7980	9400	10960
. ,	12Pa	34	45	58	75	94	112	130		45	58	75	94		130				34	45	58	75	94				180	
AC unit input	30Pa	41	55	72	83	102	120	140	41	55	72	83	102	120	140	172	210	250	41	55	72	83	102	120	140	172	210	250
power (W)	50Pa	44	63	78	95	108	130	155	44	63	78	95	108	130	155		-	298	44	63	78	95	108	130		185		298
	12 Pa	14	19	27	37	46	64	62	14	19	27	37	46	64	62	88	110	139	14	19	27	37	46	64	62	88	110	139
DC unit input power	30 Pa	19	26	35	46	57	73	77	19	26	35	46	57	73	77	101	130	166	19	26	35	46	57	73	77	101		166
(W)	50 Pa	27	35	45	60	70	90	98	27	35	45	60	70	90	98	125	158	195	27	35	45	60	70	90	98	125	158	195
	12Pa	34	37	39.5	42	44	47	44	34	37	39.5	42	44	47	44	47	49	51	34	37	39.5	42	44	47	44	47	49	51
Noise (dB (A)	30Pa	37.5	39.5	42	44	45.5	48	46.5	37.5	39.5	42	44	45.5	48	46.5	50	50.5	52.5	37.5	39.5	42	44	45.5	48	46.5	50	50.5	52.5
(A)	50Pa	41.5	43	44	47	47	49	48.5	41.5	43	44	47	47	49	48.5	51	51.5	54	41.5	43	44	47	47	49	48.5	51	51.5	54
Water flow	rate (l/min)	5.4	8.5	10.3	12.9	15.5	18.1	20.6	6.6	9.5	12.3	15.0	18.2	20.8	24.2	28.2	33.0	37.3	7.6	10.6	13.4	16.1	19.8	22.3	26.7	32.2	37.3	43.6
Water pressu	re drop (kPa)	12	28	20	28	30	36	30	22	24	22	30	32	35	33	40	40	45	20	18	18	18	22	30	26	36	35	48
Fan	ype		L	1							1	Cer	ntrifu	gal, fo	orwar	d mu	lti-bl	ade							L	1		I
Motor	type		Permanent Split Capacitor																									
	Row				2								(3		-							4	1				
Coil	Working													1.	6 MF	a												
	In-Out													3/	4" FF	т												
Connecting	Drain Connection													3/4	4" MF	т												

Note:

Net weigh (kg)

 The performance data in the table is measured at a high airflow rate with corresponding residual pressure.
 Cooling capacity is measured at an inlet cold water temperature of 7°C, inlet air temperature of 27°C DBT/19.5°C WBT, and inlet-outlet temperature difference of 5°C.

15.8 17.8 18.7 20.5 22.7 23.7 30.3 16.8 18.8 19.7 21.5 23.7 24.7 31.5 34.4 37.8 40.8 17.3 19.3 20.2 22.2 24.4 25.4 32.3 35.2 38.8 41.6

3. Noise level is measured at a location 1m from both the front and bottom of the unit in a semi-anechoic room.

4. The water pressure drop shown in table excludes 2 way water valve (kv=3.0)

5. Additional input power for 2 way water valve and control board is 10W.

4 way cassette indoor unit (42GWC)

					1	1			(
Content	Model	003	004	005	006	008	010	012	014
	High	540	680	850	1020	1360	1700	2040	2380
Air flow rate (CMH)	Mid	430	540	680	810	1080	1300	1570	1830
	Low	350	440	550	660	880	1010	1210	1410
Cooling capacity	w	3200	3700	5800	6600	8700	9100	10900	12600
AC unit input power	w	35	48	50	60	102	150	160	190
DC unit input power	w	14	25	22	28	50	/	/	/
Current	(AC) A	0.18	0.24	0.25	0.3	0.48	0.70	0.74	0.88
Noise	dB (A)	35/32/29	40/35/31	35/31/27	37/33/29	45/40/35	48/45/41	50/47/44	52/49/46
Panel dimensior	ı (mm)	720'	*720	960*960			1050*1050		
Unit dimension	Unit dimension (mm) 575*575*298		825*825*298			930*930*290			
Panel weight (kg)		2.5	2.5	5.0	5.0	5.0	6.5	6.5	6.5
Unit weight (kg)		17.0	17.0	37.5	37.5	40.1	42	42	42

Note:

1. The performance data in the table is measured at a high airflow rate.

2. Cooling capacity is measured with an inlet cold water temperature of 7°C, inlet air temperature of 27°C DBT and 19.5°C WBT, and inlet-outlet

temperature difference of 5°C.

3. Noise level is measured at a location 1m from both the front and bottom of the unit in a semi-anechoic room.

High ESP IDU (suspending AHU)

Model	Air flow rate (CMH)	Width (unit + control box) *length*height	Input power (KW)	ESP (Pa)	TP (Pa)	Cooling capacity (kw)	Cooling WDP (Kpa)	Unit weight (kg)	Noise level (dB(A))
DBFP010L3R	1000	(680+154)×986×380	0.34	130	234	5.0	10.1	46	52
DBFP010H3R	1000	(000+104)×980×380	0.44	220	321	5.0		47	55
DBFP015L3R	1500	(875+154)×986×380	0.44	115	227	7.8	14.5	53	55
DBFP015H3R	1500	(873+134)×980×380	0.79	215	320	1.0	14.5	55	58
DBFP020L3R	2000	(872+150)×986×500	0.63	195	300	11.1	22.0	63	56.5
DBFP020H3R	2000	(072+130)×900×300	0.84	280	381	11.1	22.0	64	59.5
DBFP025L3R	2500	(1018+150)×986×500	0.83	165	265	13.9	25.8	67	60
DBFP025H3R	2500	(1010+150)×960×500	0.84	250	356	13.9	25.0	70	61
DBFP030L3R	3000	(1166+150)×986×500	1.09	120	250	16.9	30.0	75	62
DBFP030H3R	3000	(1100+130)×960×300	1.09	200	330	10.9	00.0	75	62
DBFP040L3R	4000	(1458+150)×986×500	0.63X2	185	300	22.1	28.3	108	58
DBFP040H3R	4000	(1456+150)×966×500	0.84X2	250	381	22.1	20.3	112	61
DBFP050L3R	5000	(1752+150)×986×500	0.83X2	160	265	28.9	43.8	123	60.5
DBFP050H3R	3000	(1752+150)×980×500	0.84X2	250	356	20.9	43.0	127	61.5
DBFP060L3R	6000	(2044+150)×986×500	1.09X2	150	250	34.5	57.2	134	62.5
DBFP060H3R	0000	(2044+150)×960×500	1.09X2	220	330	34.5		138	63.5
DBFP010L5R	1000	(680+150)×986×380	0.34	90	234	6.4	8.3	49	52
DBFP010H5R	1000	(000+100)×960×060	0.44	175	321	0.4	0.0	50	55
DBFP015L5R	1500	(875+150)×986×380	0.44	70	227	10.0	10.9	56	55
DBFP015H5R	1500	(075+150)×960×560	0.79	170	320	10.0	10.9	58	58
DBFP020L5R	2000	(872+150)×986×500	0.63	160	300	12.7	8.6	67	56.5
DBFP020H5R	2000	(872+130)×980×300	0.84	230	381	12.7	0.0	68	59.5
DBFP025L5R	2500	(1018+150)×986×500	0.83	140	265	16.1	18.8	75	60
DBFP025H5R	2500	(1010+150)×960×500	0.84	210	356	10.1	10.0	75	61
DBFP030L5R	3000	(1166+150)×986×500	1.09	85	250	20.2	28.3	81	62
DBFP030H5R	3000	(1100+130)×980×300	1.09	150	330	20.2	20.3	81	62
DBFP040L5R	4000	(1458+150)×986×500	0.63X2	150	300	27.2	31.3	115	58
DBFP040H5R	4000	(1-30+130)/300/300	0.84X2	215	381	21.2		119	61
DBFP050L5R	5000	(1752+150)×986×500	0.83X2	120	265	37.0	61.5	129	60.5
DBFP050H5R	5000	(1752+150)×960×500	0.84X2	210	356	37.0	61.5	133	61.5
DBFP060L5R	6000	(2044+150)×986×500	1.09X2	115	250	44.0	66.0	142	62.5
DBFP060H5R	0000	(2044+130)29602300	1.09X2	185	330	44.0	0.00	146	63.5

Rated condition: Cooling- entering air temperature of 27°C DBT and 19.5°C WBT; entering water temperature of 7°C, entering and leaving temperature difference of 5°C.

Note:

1. Connect position- left connect, when it comes to face inlet vent and the coil connector is on the left of AHU; opposition is right connect

2. Digital number 8 means external pressure (H- high, L – low); digital number 9 means cooling capacity (3- standard capacity, 5- high capacity) 3. Input power means total input power by unit level.

 Model	Width (unit + control box) *length*height	Air flow rate (CMH)	ESP (Pa)	TP (Pa)	Input power (KW)	Input power (KW)	Noise level (dB(A))
DFP020LR	(1018+154)×986×380	2000	95	297	0.79×1	65	58.2
DFP020HR	(1016+154)×966×360	2000	65	297	0.79×1	67	58.2
DFP030LR	(1458+154)×986×380	3000	130	320	0.79×2	92	58.5
DFP030HR	(1436+134)×960×360	3000	100	320	0.79×2	95	58.5
DFP040LR	(1752+154)×986×380	4000	85	297	0.79×2	105	60
DFP040HR	(1732+134)×960×360	4000	55	297	0.79×2	109	60

Note:

1. Unit capacity refer to DBFP(R) w/ same air flow rate.

2. Digital number 7 means external pressure (H- high, L - low).

3. Input power means total input power by unit level.

Heat recovery fresh air unit (DXF)

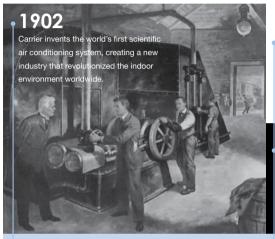
Model	Air flow rate (CMH)	Sensible efficiency Summer (%)	Total efficiency summer(%)	Power (kw)	External pressure(Pa)	Power supply	Weight (kg)	Noise (dB(A)	Length (mm)	Width (mm)	Height (mm)
DXF0600SQ	600	72.1	57.7	0.09x2	177		95	52	1130	900	480
DXF0800SQ	800	68.7	55.4	0.09x2	144		110	53	1130	980	480
DXF1000SQ	1000	67.5	54.4	0.09x2	104		125	55	1240	1120	480
DXF1500SQ	1500	66.8	54.5	0.275x2	273	220V-1P-50Hz	145	58	1360	1120	565
DXF2000SQ	2000	64.2	52.8	0.35x2	225		165	60	1440	1290	565
DXF2500SQ	2500	63.4	52.3	0.425x2	152		190	60	1520	1490	565
DXF3000SQ	3000	64.6	53.2	0.55x2	179		225	62	1620	1390	650
DXF1000PQ	1000	67.2	54.4	0.12x2	143		125	52	1240	1120	480
DXF1500PQ	1500	66.8	54.5	0.275x2	242		145	55	1360	1120	565
DXF2000PQ	2000	64.3	52.8	0.32x2	201		165	57	1440	1290	565
DXF2500PQ	2500	63.2	52.3	0.45x2	188		190	58	1520	1490	565
DXF3000PQ	3000	64.6	53.2	0.55x2	204	380-3P-50Hz	225	59	1620	1390	650
DXF3500PQ	3500	65.2	53.3	0.45x2	144		260	59	1780	1620	650
DXF4000PQ	4000	66.2	54.2	0.75x2	140		295	60	1840	1540	735
DXF4500PQ	4500	65.7	53.8	0.75x2	116		310	61	1900	1660	735
DXF5000PQ	5000	66.1	54.3	1.1x2	125		335	62	2020	1940	735
DXF6000PQ	6000	67.3	55.2	1.5x2	213		370	62	2140	1940	820

Note: DXF can realize on/off control based on build-in CO₂ sensor.

Controller performance data

Model	Integrated installation: HSM7IP2MA	Flush mounted installation: HSM7RP2MA				
Product name	Intelligent system manager					
Power supply	220~240V ± 10%/1ph/50-60Hz					
Appearance	7' color LCD touch screen with graphical display in Chinese and English					
Basic functions	Control scope : up to 8 outdoor units, 1 packed hydronic kit, up to 128 IDU and FAU (Max 8 FAU)					
Advanced functions	Zone control, schedule control, VFD pump control, self adaptive variable water temperature control, fresh air unit CO2 concentration control					
Network protocol	Modbus IP protocol (link to BA)					

Model	CTC300BR (for AC IDU) CTC300GR (for AC IDU) CTC300SR (for AC IDU) CTC301BR (for DC IDU) CTC301SR (for IC						
Color	Black	Gold	Silver				
Name	Indoor thermostat						
Dimensions (W×H×D)	86×86×40 mm						
Rated power supply	DC 12V						
Appearance	LED back light, soft key, graphical display in English						
Basic functions	On/Off; Operating mode selection; Cool, heat, Ventilation, Dehumidify; Sleep mode setting; Wind speed setting; Temperature setting CTC100 applied for 2 pipes, 2 pipes + E-heater, floor heating, and floor heating + 2 pipes CTC200 applied for 2 pipe, and 2 pipe + E-heater						
Advanced functions	Real-time clock setting; User parameter setting						
Network connection	Modbus protocol						
Options	Wireless remote control: CTCIR01						



Model	30RBM90E003
Name	Repeater
Dimensions (WxHxD)	70x120x25mm
Rated power supply	Build-in power adapter,220V-240V+/-10%1P,50-60Hz
Shell material	ABS plastic
Basic function	Enhance the signal between thermostats and system manager Suggestion: add one repeater per 400 meter control line or per 40 thermostats

Model	OOPPY140131900
Name	Network multifunction Power Meter
Size(W x H x D)	96 x 96 x92 mm
Grid	Three-Phase Three-Wire System
Frequency	45~65Hz
Rated Power	AC85~265V or DC100~350V: Power ≤ 100VA
Voltage	Rated Value: AC 100V/400V, Overload: 1.2 times rated value (Continuity): Sustain 2 times rated value.
Current	Rated Value: AC 1A/5A, Overload:1.2 times rated value (Continuity): Sustain 10 times rated value
Measurement Accuracy	Current/Voltage: level 0.2, Power/Active Electric Energy: level 0.5/Frequency 0.01Hz, Reactive Electric Energy: level 1
Communication Protocol	Interface: RS485, Protocol: Modbus-RTU/Profibus

Carrier air-conditioner milestones

1952 Carrier develops the first residential central air conditioning system.

1955 Carrier, an early first champion of energy conservation, develops the first automatic variable airflow supply fan, controlled by system pressure.

1992

Carrier develops the cone diffuser for eco-friendly refrigerant. Used in a positive-pressure environment. it improves the efficiency of the centrifugal compressor by reducing loss in the diffusion section.

1994

Carrier adopts the patented expansion turbine technology in its centrifugal water chillers to replace conventional throttle technology used by the rest of the industry. Carrier receives the Energy Saver Award from the US Department of Energy.

1911

displayed at the Washington State Museum.

Dr. Carrier publishes his basic principles of temperature and humidity control, which later evolved into his "Rational Psychrometric Formulae" paper and laid the foundation for modern air conditioning calculation

THE WORLD OF TO-DAY ng system, a r-conditioning kthrough systems for tall bu uildings

> 1945 Carrier produces the world's first lithium bromide absorption chiller.

1972

Carrier manufactures the first centrifugal water chiller with single unit cooling capacity of 10,000 RTH.

ces the first chiller with a e pipe

reduces ur

via

2002

anniversary of Wills H. Carrier's invention of air conditioning.

2005 Carrier globally launches

Starfire, the 30RB/RQ large air-cooled scroll chiller/heat pump that is the first to use the eco-friendly refrigerant HFC-410A.

2006 Carrier globally launches the AquaForce water chiller, using HFC energy efficiency. It is also honored with the Chinese construction industry's Gold Energy-saving

1996

1999

Carrier launches the 30HXC watercooled screw chiller and the 30GX aircooled screw chiller, fully adopting the eco-friendly chlorine-free refrigerant HFC-134a.

Carrier establishes a global strategic

alliance with Toshiba Corporation to

engage in technology research and

air-conditioning products.

develop new residential and commercial

It also launches a compact new centrifugal chiller with the latest centrifugal compression technology and HFC-134a refrigerant to achieve improved COP.

Air Conditioning Product Award

2009

grade 1 or 2.

2010

Carrier brings the 30XQ air-cooled screw heat pump to market.Carrier introduces the NGA air-cooled scroll water chiller/heat pump. Carrier launches the 30XW water-cooled screw chiller, with models ranging from 133 RTH o 500 RTH,

all of which achieve China's national energy efficiency

2008

Carrier launches the 19XRD twin-compressor centrifugal chiller with HFC-134a, raising the cooling capacity of a single unit to 3000 RTH and enhancing part-load energy efficiency by 7%

2011

The AdvanTE3C Solutions Center is established in Shanghai, gathering experts in energy efficiency and environment protection from across the globe to engage in research and development of sustainable building solutions

2013

Innovative Carrier AquaFlow™ VWV System

2018

Carrier AquaFlow™ **VWVII** inverter series

We make the world a better place to live. We create comfortable, efficient, healthy, safe and secure environments, and ensure the global food supply is transported and preserved for safe consumption.

