

m

Carrier AquaFlow[™] Variable Water Volume (VWV) System

system

2 😪 🖪

Turn to the Experts

Since Willis Carrier invented the first air-conditioning system in 1902, Carrier has been a technology pioneer and the preferred choice of customers around the globe, providing highly efficient chillers as well as central and airside air-conditioning units for household and commercial applications. As a unit of United Technologies Corp., Carrier is the world's leading provider of heating, ventilation and air-conditioning (HVAC) and refrigeration equipment.

Californial Californial California Cali

Maria and Array and Sandy Control Maria and Array and Ar

NAT SHEA

Contents

Overall safety and reliability

<image>

Carrier AquaFlow™ Variable Water Volume (VWV) System THE BEST OF BOTH WORLDS

Carrier's innovative AquaFlow[™] VWV System combines the benefits of conventional hydronic and VRF systems, providing superior indoor comfort and energy efficiency.

The AquaFlow[™] VWV System includes modular outdoor air-cooled chiller and heat pump unit with self adaptive technology to control the variable refrigerant evaporating temperature*, low-noise fan coil unit, heat recovery fresh air handling unit, VFD hydronic kit, networked indoor thermostat, and intelligent system manager.

Single system capacity: 24.5~328kW

Versatile Applications

Innovation and Breakthrough

AQUAFLOW

	С	arrier AquaFlow™ VWV System		Conventional Hydronic Syst	em	Conventional VRF	
	Flexible Design	Max. indoor unit (IDU) / outdoor unit connectivity: 200% Max. pipe length: 400m		Case by case design on job basis		Max. indoor unit/outdoor unit connectivity: 130% Max. pipe length: 150m	\bigcirc
Expanding the		difference: 100m*		Case by case design on job basis		Max. ODU / IDU height difference: 50m	
conventional hydronic		Temp control +/-0.5°C, humidity detect +/-5%	Ũ	No humidity control function	\bigcirc	Air supplied too cold or too hot; no humidity control function	\bigcirc
systems	Indoor Comfort	Non-stop heating in winter defrosting (multiple outdoor unit system)		No heating during winter defrosting	\bigcirc	No heating during winter defrosting	\bigcirc
		No risk of indoor refrigerant leakage		No risk of indoor refrigerant leakage	\bigcirc	Potential risk of indoor refrigerant leakage	\bigcirc
	Fact			Transported by crape:		Lift transport and refrigerant nine	
	Easy Installa-	Lift transport, pipe connection only	\bigcirc	high installation cost		connect only	<u> </u>
	and Mainte-	System centralized control	\bigcirc	No centralized control; no communication between IDU / ODU		System centralized control	Ũ
	nance	Energy metering and BA connection	Ũ	Extra hardware & software needed and substantial investment	<u>@</u>	Extra hardware & software needed and substantial investment	9
Expanding the		40% higher system IPLV vs. conventional hydronic system, 10% higher system IPLV vs. VRF	Ũ	IPLV is 40% lower than the VWV system		IPLV is 10% lower than the VWV system	<u>@</u>
conventional VRF		Self adaptive variable water temperature / Self adaptive variable refrigerant evaporating temperature Energy efficiency: grade 1(China GB)	٢	No variable refrigerant flow / variable refrigerant evaporating temperature Energy efficiency: grade 2 or below (China GB)		Variable refrigerant flow Energy efficiency: grade 1(China GB)	9
	Cost Savings	No cooling/heating capacity loss in long pipes, Outdoor unit optimized 10-20%**	Ũ	No cooling/heating capacity loss in long pipes (subject to appropriate design)	Ũ	Cooling capacity loss: 10% – 15% in long pipes	6
		Self adaptive variable water flow	٢	Constant water flow speed	\bigcirc	Not applicable	-
		100% fresh air effect, 25% fresh air operation cost	\bigcirc	100% fresh air effect, 100% fresh air operation cost		100% fresh air effect, 100% fresh air operation cost	6

* Outdoor unit and hydronic kit sited above the indoor unit ** Within the recommended pipe length range

New Carrier AquaFlow™ VWV System

Besides its easy installation, auto-commissioning and integrated intelligent control, the Carrier Variable Flow System brings you unprecedented new control experience.

Project pro	ogress		Customer value
	Ĩ	Design	 Packaged selection by components and system System level design validation Flexible layout for any kinds of building
Planning and business		Purchase	 Efficient investment based on optimized system capacity and roof installation Phase- investment via flexible installation Simple process via one contact, secured lead-time
X		Installation	Only water pipe and electrical connections are required, eliminating the risk of water leakage, with installation fees close to conventional VRF system
Construction		Commissioning	System automatically addressing, shorter commission cycle
	0	Operation	 Lower system running cost based on variable flow rate, variable leaving temperature and fresh air heat recovery Modularized outdoor unit w/ tandem compressor design can be backed up interchangeably.
	X	Indoor air quality	 Sufficient fresh air according to CO2 sensor Continuous heating during defrosting (multi-outdoor units system) Indoor no refrigerant leakage risk
Service		Management	 Integrated system with dedicated system controller (zone and schedule control) Build-in individual billing function, only add one power meter for each system
		Daily maintenance	 Rigid quality control by system level Quick response by one to one correspondence
After-sales service	\$ 0	System modification	Flexible for system retrofit in futureNo impact with other users

Single system capacity

1 Design flexibility, free of concern

Offering one station system, less design workload

- » Validated system selection report for business matters
- » Components level report to review all facilities
- » Packaged hydronic kits offering: test proven performance, smaller foot print, shorter install cycle and less labor burden

Professional and completed system level report

Mutiple configuration options are offered with a wide range of IDUs and ODUs

Wider workable load range for outdoor units (10% - 200%), lower initial cost and easier system upgrades.

Indoor unit-outdoor unit capacity ratio = (combined capacity of all fresh air handling units and indoor units) / (total outdoor unit capacity) $\times 100\%$

Flexible installation of outdoor unit, design freedom

Outdoor unit centralized installed on roof

With a greater maximum elevation difference between the indoor and outdoor units, the system allows design flexibility to help solve problems associated with limited space for outdoor unit installation.

Lower outdoor units

Upper outdoor units

Connecting pipe length of less than 400 m recommended. (From the outdoor unit to the farthest indoor unit)

High external static pressure option for outdoor unit for install by floor or on refuge storey Ultra-high external static pressure It is possible to increase the external static pressure of the outdoor unit from 0 to 100 Pa without disrupting heat transfer in either hierarchical or centralized configurations.

Low ESP, Air short circuit and interference

VWV high ESP, No interference for installation by floor

Compacted design, flexible layout

Compacted size suited for elevator transportation leads to flexible location and shorter installation cycle

Elevator transportation

2 System efficiency

Tandem compressor, high efficiency at part loading

Dual compressor shared single-circuit leads to high IPLV (up to 5.2), gaining double heat exchange surface once only one compressor runs. On the contrast, the IPLV of modular chiller is low (over 3.7) derived from dual compressor w/ individual circuit.

Efficient fresh air unit

Fresh air heat recovery Reduce system load

9 10 11 12 13 14 15 16 17 18 19 20 Time/h

Fresh air actually needed

Fresh air supplied on demand

CO₂ demand control

Fresh air saved

Hydronic coil

CO₂ sensor

In accordance

with continuous

fresh air supply

Based on CO₂

concentration

Plate type heat recovery

With an integrated CO₂ concentration detection device, the heat recovery fresh air handling unit (BFP) continuously monitors indoor CO₂ levels and intelligently starts or stops units on demand so as to reduce the energy needed for fresh air processing by the outdoor unit and fresh air discharge fan. When a building has large variations in personnel density, a great deal of cooling or heating capacity will be wasted if fresh air is supplied everywhere and at all times at a preset level suitable to meet the peak demand of the highestdensity area.

CO2 can be used as an indicator of indoor air quality. The calculation references GB 50189-2005 (China's national design standards for energy efficiency of public buildings), table B.0.6-2 (hour-by-hour personnel presence ratios).

Circulating fresh air flow (m³/h)

7 8

Efficient system- water temperature self-adjust

►H

Comparing part-load compressor operations

In a VRF system, the refrigerant evaporating temperature is set at 6°C

Under part load conditions, the VW's' unique technologies reduce power consumption and increase operating efficiency by varying the leaving water temperature and refrigerant evaporation temperature.

Efficient system- variable water flow

 $A_{0\,:}$ Pump working point at full load

A' : Pump working point w/ constant frequency when partial outdoor and indoor units isolated at part-load

A1: Pump working point w/ smaller frequency when partial outdoor and indoor units isolated at part-load

under part-load conditions

Variable flow rate control, leads to -67% energy saving of water pump

Power consumption index

Fixed pump Variable pump

Case study

An office building in Shanghai, construction area 14000 m2, indoor peak loading 1150kW, fresh air loading 550kW.

System configuration: outdoor unit 30RQM040*4sets, Packaged hydronic kits HK320*5 sets, cassette type indoor unit 42GWC006*100sets, fresh air unit DBFPZ4I*10 sets

Both of energy saving technique

Compare to traditional air cooled chiller, VWV system can save over 40% system consumption (249,274 Kw*h), including 27% saving upon water temperature self-adjust and available water flow

Power consumption of VWV system

Note: data source from carrier internal case study

3 Indoor comfort

Smart defrosting, secure heating effect

1) Single unit defrosting control

- » The outdoor unit incorporates intelligent defrosting control, based on the patented frost factor method.
- » The system dynamically analyzes frost buildup on the heat pump coil by measuring the difference between entering air temperature and air suction saturation temperature. When this "frost factor" reaches a predetermined value, automatic defrosting is triggered to avoid any loss of heat or water temperature fluctuation.
- » Prior to shut-down, the unit will automatically determine the "frost factor" and decide whether residual frost needs to be cleaned from the coil to facilitate the next startup.
- 2) System defrosting control
- » The Carrier system's centralized management system collects information about which units are defrosting and awakens other outdoor units in standby mode as necessary to ensure that indoor heating can be maintained without interruption.
- » Note: This function applies to systems with two or more ODUs.

2 in 1 control -air conditioning + floor heating

A Big space (hall of hotel) Secured heating effect at low spot

High tier room (CEO office) Comfort and healthy

Outdoor unit: air conditioning + floor heating Thermostat: 2 in 1 control, install and operate easily

Low Indoor Noise

units, further reducing the system's already minimal operating noise (by as much as 26% for the 42CN006).

DC brushless motor and drive

Low noise fan Bigger impeller and low entering speed fan structure equipped with NSK bearing leads to reduce the mechanical noise

DC brushless motor DC brushless motor can avoid low frequency noise and furtherly reduce running noise. Considering indoor unit operating at mid or low speed mostly, the effect of running noise is better than AC motor

The running noise of indoor unit can be decreased down to 22 dB(A) because of low noise fan and DC brushless motor

Carrier patent design Silencer

the noise generated by the dynamic pressure of the outlet of the wind turbine is absorbed by built-in wing type foam spacer, which involved with the advanced computational fluid dynamics to simulate the optimization, and the performance of the unit is not affected. At the same time, greatly reduce the unit noise at high speed (over -3 dB(A))

The air flow rate and static pressure of the unit is not affected by silencer, the performance of some models is also slightly improved, the following is measured contrast by unit

Ducted indoor unit	Silencer	ESP (Pa)	Test flow rate (CMH)	Test noise(dBA)	Noise drop	
Unit 1 (2 fans)	No	30	1005.0	45.6		-
	Yes	30	1011.6	42.2	3.4 UDA	and a state of the
Linit 2 (4 fans)	No	30	1333.1	46.0		
	Yes	30	1351.4	42.5	3.3 UDA	0.0
Unit 3 (4 fans)	No	12	1973.0	46.7		
	Yes	12	1954.0	43.7	3.0 dBA	

Maintaining Pleasant Indoor Temperture and Humidity

Powerful air conditioning doesn't mean better comfort, too cold in summer or too hot in winter leads to catch cold or serious water loss of the human body. Carrier VWV can offer better indoor comfort based on strong temperature and humidity control technology.

Guaranteeing Indoor Air Quality

The heat recovery fresh air handling unit (BFP) intelligently monitors indoor CO_2 concentration and supplies fresh air on demand, giving due consideration to both energy efficiency and comfort while also controlling the fan units to avoid negative indoor air pressure.

National CO ₂ density standard	VWV CO ₂ Status
≤0.1%(2000mg/m³)*	700±50PPM(1260±90mg/m ³)

*From GB/T 18883-2002 Indoor Air Quality Standard

Fresh air purifier (anti PM 2.5)

Optional fresh air purifier, including supply fan, primary filter and no charged medium filter

Nanoscale mechanical filter, uncharged. Anti particle smaller than PM 2.5 especially: sandwich structure and ripple type design of filter contribute to filtering area.

*效率指对0.1~2.5um的所有颗粒物

Benchmark of pressure drop and dust holding

Indoor air purifier (anti- PM 2.5)

Optional HAF electrostatically charged media filter for ducted indoor unit (42CE/CN)

Efficient removal of PM2.5 particles

The unique electrostatic technology and microstructure technology, and to ensure stable effect of electrostatic filter, the filter can increase the effective area, more efficient capture and bearing micro particles. Test loop filter efficiency of PM2.5 is up to 98%.)

Low air flow pressure drop

The filter adopts the open channel structure, which ensures the high efficiency and low resistance, especially suitable for small ducted indoor unit w/ low static pressure

Resistance to mildew and moisture

The filter made of pure synthetic fiber material, which is non-toxic, non-detachment, resistance to mildew and moisture, can not lead to secondary pollution indoor.

* Please select suitable model according to air speed and related pressure drop

4 System expand and retrofit easily

Multi-stage Installation to Spread Out Capital Investment

All indoor units can be installed first, followed by the outdoor units in batches, or the process can be reversed, with outdoor units deployed first and indoor units following in batches.

As shown in below case: developer can install outdoor unit for property management office firstly, then add

related outdoor unit for trading company and customer service center step by step depending on leasing status.

More flexibility for changing pipe and products in future

For rental office building, we often face tenants changing, which will impact on re-decoration indoor, transforming of structure layout and system expansion

- EV EV ΕV FV PS ps 5 I. 1 1 10 1 Manage office Meeting room 2 Office? Office Office Office Office Offic Office3 Office)ffice^p Offic Office
 - Newly decorated

Space rearrangement

Air conditioning area change

5. Efficient and easy management

New Networked Thermostat

- » Easy operation with backlit LCD display and touch buttons
- » Multi-modes: cooling , heating, ventilation, dehumidifying, E-heating, floor heating
- » Option fan speed: high/mid/low/auto
- » Indoor temperature display and setting
- » Multiple colors available to complement interior design

Intelligent System Manager

- » 5" color LCD touch screen (optional 7" available)
- » Graphical touch-screen interface
- » Chinese and English languages
- » Zone control (up to 128 zones)
- » display and storage running data based on SD card
- » support to web access

- » Optional remote control for easy operation of multiple indoor units
- » support to allocate address of products manually or automatically
- » System keep running if one thermostat power off or damaged

» Schedule control (week/month/year)

» Remote control and indoor unit locking

» remote diagnosis and reset for products

» several levels accouter for logo in

» Energy metering

functions

Indoor unit	Fresh air unit	Advance Application Constants	Login Alarm Cone manage Cone	Configuration rement le
Indoor unit management		Cutdor units	Zone management	Configuration
Plane (part lane)	Construction value of a second s		New Add And Add Add Add Add Add Add Add Add	
Indoor unit ratings	System overview	Trend curve	Add/modify/delete	Language
Eroch air unit	Concentration			Non Non 10 Non 0 Non 10 0

Network Connection

The centralized management system supports TCP/IP and is connected to the building services control room via a conventional local area network (LAN), allowing the entire Variable Flow Air-conditioning System to be monitored and managed via a web browser. Multiple systems can form a simple group-controlled system via LAN, thus eliminating the need for specialized BAS software and reducing wiring complexity. The management system can also be connected to the building automation system (BAS) via the buildin BAC-Net protocol.

Carrier also can provide PC level : VWV intelligent management for over 30 systems

Multi-group management system

Precise energy metering

Shared power consumption accurate collection (Per 2s)

IDU capacity consumption

accurate calculation (Per 10s)

User-friendly Operation

- » 1. Multiple units per tenant
- User groups are defined according to indoor units (IDUs)

🖀 < AAA	Member					
Show: IDUs Y						
UNIT001						
UNIT003	UNITOO6					
UNIT004						
	UNIT007					
	UNITOOS					
	V 🖾 UNIT009 V					
ļģ∮ Edit						

» 3. Electricity bills are issued automatically each month as plain text CSV files that can be viewed and edited in Microsoft Excel®

Bill for August 2013 (from 1 st to 31 st)								
Billing description	Peak-time power consumption (kWh)	Peak-time electricity cost (RMB)	Valley time power consumption (kWh)	Valley time electricity cost (RMB)	Total electricity cost (RMB)			
Total power consumption	193	231.6	123	36.9	268.5			
Shanghai A Industrial Company	54	64.8	8	2.4	67.2			
Unit001	15	18	3	0.9	18.9			
Unit002	7	8.4	2	0.6	9			
Unit003	11	13.2	2	0.6	13.8			
Unit004	5	6	1	0.3	6.3			
Unit005	16	19.2	0	0	19.2			

Notes: Please to adopt VWV intelligent management if daily report required.

Data Storage and Protection

- » 1GB data storage capacity
- » An uninterruptable power supply (UPS) is suggested as part of the emergency power strategy

Shanghai B Industrial Company	28	33.6	30	9	42.6
Unit006	6	7.2	8	2.4	9.6
Unit007	12	14.4	12	3.6	18
Unit008	3	3.6	6	1.8	5.4
Unit009	7	8.4	4	1.2	9.6
Shanghai C Commercial Company	9	10.8	8	2.4	13.2
Unit010	4	4.8	7	2.1	6.9
Unit011	5	6	1	0.3	6.3

6 Overall safety and reliability

Integrated system, reliable performance and secured quality

Fragmental system

- » Components combined on site, compatibility concern and uncertain performance
- » Lots of hydronic kits installed on site, more leakage points
- » Failure shoot product by product, fussy and long cycle

Integrated system

- » Design and test by system, no compatibility issue and reliable performance
- » Packaged hydronic kits preinstalled, secured quality and less leakage points
- » All alarm in one screen, quick and precise failure shoot

Wide Operating Range and Enhanced Heating in Extreme Weather

When equipped with the optional EVI heat pump, the Carrier variable flow air-conditioning system is able to operate in heating mode at ambient temperatures as low as -20°C, making it particularly suited to northern regions.

Freeze Protection

Double freeze protection

When the air-conditioning system is in stand-by mode in winter (such as at a retail outlet that is closed for the night or an office closed for a public holiday), customers can be assured that the system will automatically begin freeze protection measures to eliminate any risk of freezing.

- » Freeze protection at equipment level: in cold conditions, the fresh air handling unit's fresh air damp and exhaust damp automatically close and the electronic water heater in the outdoor unit heat exchanger automatically runs.
- » Freeze protection at system level: when the water temperature is low, all water valves automatically open and the pump operates; when the water temperature is even lower, the outdoor unit will enter heating mode.

Modular Outdoor Unit with Grade 1 Energy Efficiency (China GB)

- » All products in the series achieve grade 1 energy efficiency (China GB).
- » Compressors in the modular outdoor unit can be backed up interchangeably and in combination to simplify servicing.
- » Staggered equipment start-up to minimize the impact on the power grid.
- » Small cooling capacity gap and a combination of up to 8 units in 4 specifications, catering to different needs.
- » Side-by-side installation with a gap as small as 20mm.

Backup operation, double compressors \rightarrow

Eliminating Oil-return Issues

Conventional variable refrigerant flow (VRF) unit: refrigerant is sent from the outdoor unit to the indoor unit, so oil return may be inhibited through long pipes. Carrier AquaFlow[™] VWV System : water flows between the outdoor and indoor units, eliminating the potential for compressor damage due to insufficient oil return.

Office Project

Note: For standards and regulations related to office noise, refer to GB J118-88 (China's national design standards for sound insulation in civic buildings)

Allows for premium and general office environments 22%* cooling capacity optimization than VRF Caters to different rental and sales programs Fresh air on demand

Creating a Quiet Office Environment

*Based on Carrier studies

Shopping Mall

Situation: Commercial building floor area of up to 1,840m², indoor peak load of approximately 313 kW, and fresh air load of 104 kW.

Solution: Carrier AquaFlow™ VWV System SHSRQ320 (system cooling capacity: 316 kW);

Outdoor unit (30RQM040) × 8 sets; Hydronic kit (HK320) × 1 set; Ducted fan-coil unit (42CE006 - 010) × 43 sets; Heat recovery fresh air handling unit (BFP4) × 2 sets.

Mall retail store

Mall property management office

Evidence-based tenant billing with energy metering and the ability to suspend air-conditioning service in the event of a deliberate default

Provides energy metering and independent control for each store, facilitating individual billing 270 24%* cooling capacity optimization than VRF

Creating a Pleasant Shopping Experience

Based on Carrier studies

← [i]

* 12 111

Catering

26°C

⊙ 10:15~14:30 17:00~22:00

Luxury Villa Project

Situation: A three-storey villa with 21 independently controlled rooms, total floor area of up to 660m², and indoor peak load around 94kW.

- Solution 1 (without fresh air configuration): Carrier VWV System SHSRQ060 (system cooling capacity: 57.8kW); Outdoor unit (30RQM030) × 2; Hydronic kit (HK080) × 1; Low-noise ducted fan coil unit (42CN002 - 008) × 17; Cassette fan coil unit (42GWC005) × 2; Hi-wall fan coil unit (42CM002) × 2.
- Solution 2 (with fresh air configuration): Carrier VWV System SHSRQ070 (system cooling capacity: 67.8kW); Outdoor unit (30RQM035) × 2; Heat recovery fresh air handling unit (BFP2) × 1; Hydronic kit (HK080) × 1; Low-noise ducted fan coil unit (42CN002 - 008) × 17; Cassette fan coil unit (42GWC005) × 2; Hi-wall fan coil unit (42CM002) \times 2.

Project diversity factor: 0.6

Independent temperature and humidity control meets the each room load needs 35%* outdoor unit cooling capacity optimize compared with VRF Easy operation, optimal comfort Enjoy an extra 10% fresh air!

Creating a Comfortable Living Environment

* Based on Carrier studies

Technical Specifications

Carrier AquaFlow™ VWV System

System structure

* To include these optional functions, contact your local sales team.

Outdoor unit

Cooling-only type

	System	System					System external water	Intelligent
Unit model	capacity	Number of	Compline	ea model	Hydronic kit	Sets	pressure	system
	kW		30RBM030	30RBM040			kPa	manager
SHSRBM030	29.2	1	1		HK030		188	
SHSRBM040	39.5	1		1	HK040	1	218	
SHSRBM060	58.4	2	2				218	
SHSRBM070	68.7	2	1	1	HK080		195	
SHSRBM080	79	2		2			178	
SHSRBM090	87.6	3	3			1	215	
SHSRBM100	97.9	3	2	1			211	
SHSRBM110	108.2	3	1	2			209	
SHSRBM120	118.5	3		3	HK150S/		209	
SHSRBM130	127.1	4	3	1			202	-
SHSRBM140	137.4	4	2	2]		199	
SHSRBM150	147.7	4	1	3			195	
SHSRBM160	158	4		4			246	
SHSRBM170	166.6	5	3	2	1		241	
SHSRBM180	176.9	5	2	3	HK210S/	1	239	HSM*1
SHSRBM190	187.2	5	1	4			235	
SHSRBM200	197.5	5		5			234	
SHSRBM210	206.1	6	3	3			225	
SHSRBM220	216.4	6	2	4			250	
SHSRBM230	226.7	6	1	5			248	
SHSRBM240	237	6		6			248	
SHSRBM250	245.6	7	3	4			243	
SHSRBM260	255.9	7	2	5	HK325S/		242	
SHSRBM270	266.2	7	1	6	HK325T		240	
SHSRBM280	276.5	7		7			239	
SHSRBM290	285.1	8	3	5			236	
SHSRBM300	295.4	8	2	6]		235	
SHSRBM310	305.7	8	1	7]		227	
SHSRBM320	316	8		8			223	

VWV power options

Product name	Туре	380V/400V- 3Ph-50Hz	230V-3Ph- 60Hz	415V-3Ph- 50Hz	220V-1Ph- 50Hz	230V-1Ph- 50Hz	240V-1Ph- 50Hz	230V-1Ph- 60Hz
	Heat pump	\checkmark		√				
	Cooling only	\checkmark	\checkmark	√				
000	EVI heat pump	\checkmark		√				
	High ESP option	\checkmark		√				
	Single pump	\checkmark	\checkmark	√				
HK	Dual pump	\checkmark		\checkmark				
	High pressure endure	Non-standard order		Non-standard order				
	Standard unit	\checkmark		√				
FAU(BFF)	Purifier option	\checkmark		√				
42CE	Standard unit				\checkmark	\checkmark	\checkmark	\checkmark
42CN	Standard unit				\checkmark	\checkmark	√	\checkmark
42GWC	Standard unit				\checkmark	\checkmark	\checkmark	\checkmark
DBFP/DFP	Standard unit					\checkmark		

Note: Please refer to Design, Installation and Commissioning Manual for Aqua-flow™ VWV System for nomenclature and detailed specifications

Outdoor unit

Heat pump type										
Unit model	System cooling capacity	Number of outdoor units		Combine	ed model		Hydronic kit	Sets	System external water pressure	Intelligent system
	kW		30RQM025	30RQM030	30RQM035	30RQM040	Model		kPa	manager
SHSBOM025	24.5	1	1						236	
SHSBOM030	24.0	1	1	1			HK030	1	188	1
SHSPOM035	20.0	1		1	1				188	I
	20.0	1			1	1	HK040	1	233	1
	39.2	1	0			1			210	I
SHSRQIVIUSU	49.0	2	2						247	I
SHSRQIVIUSS	53.4	2	1	1			-		230	1
SHSRQIVI060	57.8	2		2	4		1.11/0000		218	I
SHSRQIVIU05	02.0	2		1	1		ΠΛυου	I	210	I
SHSRQM070	07.8	2			2	4			205	I
SHSRQM075	73.1	2			1	1	-		190	1
SHSRQM080	78.4	2				2			1/8	I
SHSRQM085	82.3	3	1	2					217	I
SHSRQM090	86.7	3		3			-		215	1
SHSRQM095	91.7	3		2	1		-		214	1
SHSRQM100	96.7	3		1	2				213	I
SHSRQM105	101.7	3			3				220	I
SHSRQM110	107.0	3			2	1			213	I
SHSRQM115	112.3	3			1	2	HK150S/	1	211	l.
SHSRQM120	117.6	3				3	HK1501		209	1
SHSRQM125	120.6	4		3	1				205	1
SHSRQM130	125.6	4		2	2		-			204
SHSRQM135	130.6	4		1	3				200	
SHSRQM140	135.6	4			4				207	
SHSRQM145	140.9	4			3	1		í L	200	
SHSRQM150	146.2	4			2	2			199	1
SHSRQM155	151.5	4			1	3			247	1
SHSRQM160	156.8	4				4			246	1
SHSRQM165	159.5	5		2	3				243	
SHSRQM170	164.5	5		1	4				242	
SHSRQM175	169.5	5			5				248	HSM*1
SHSRQM180	175.4	5		2		3			239	1
SHSRQM185	180.1	5			3	2	HK2103/	1	239	1
SHSRQM190	185.4	5			2	3			237	1
SHSRQM195	190.7	5			1	4			235	1
SHSRQM200	196.0	5				5			234	1
SHSRQM205	198.4	6		1	5				232	
SHSRQM210	203.4	6			6				238	1
SHSRQM215	208.7	6			5	1			227	1
SHSRQM220	214.0	6			4	2			252	1
SHSRQM225	219.3	6			3	3			251	1
SHSRQM230	224.6	6			2	4			250	1
SHSRQM235	229.9	6			1	5			249	1
SHSRQM240	235.2	6				6			248	1
SHSRQM245	237.3	7			7				253	1
SHSRQM250	242.6	7			6	1			246	1
SHSRQM255	247.9	7			5	2			245	1
SHSRQM260	253.2	7			4	3			244	I
SHSRQM265	258.5	7			3	4			243	1
SHSRQM270	263.8	7			2	5	HK3255/	1	242	1
SHSRQM275	269.1	7			1	6		HK325T '	241	1
SHSRQM280	274.4	7				7			239	1
SHSRQM285	276.5	8			7	1			238	1
SHSRQM290	281.8	8			6	2			238	1
SHSRQM295	287.1	8			5	3			237	1
SHSRQM300	292.4	8			4	4			237	1
SHSRQM305	297.7	8			3	5			233	1
SHSRQM310	303.0	8			2	6			229	1
SHSRQM315	308.3	8			1	7			225	1
SHSRQM320	313.6	8				8			223	l.

Outdoor unit

Unit model	System cooling capacity	Number of	Combine	ed model	Hydronic kit	Sets	System external water pressure	Intelligent system	
	kW	outdoor units	30RQE035	30RQE040	Model		kPa	manager	
SHSRQE035	35.5	1	1		1.11/0.40	4	233		
SHSRQE040	41.0	1		1	HKU4U		215		
SHSRQE070	71.0	2	2				195		
SHSRQE075	76.5	2	1	1	HK080	1	180		
SHSRQE080	82.0	2		2			170		
SHSRQE105	106.5	3	3				220		
SHSRQE110	112.0	3	2	1			210		
SHSRQE115	117.5	3	1	2			207		
SHSRQE120	123.0	3		3	HK150S/ HK150T	1	205		
SHSRQE140	142.0	4	4				205		
SHSRQE145	147.5	4	3	1			197		
SHSRQE150	153.0	4	2	2			192		
SHSRQE155	158.5	4	1	3			240		
SHSRQE160	164.0	4		4			238		
SHSRQE175	177.5	5	5			1		242	
SHSRQE180	183.0	5	4	1					235
SHSRQE185	188.5	5	3	2	HK210S/		233		
SHSRQE190	194.0	5	2	3	111112101		230		
SHSRQE195	199.5	5	1	4			228		
SHSRQE200	205.0	5		5			226		
SHSRQE205	213.0	6	6				230		
SHSRQE210	218.5	6	5	1			222	HSM*1	
SHSRQE215	224.0	6	4	2			252		
SHSRQE220	229.5	6	3	3			250		
SHSRQE225	235.0	6	2	4			248		
SHSRQE230	240.5	6	1	5			245		
SHSRQE240	246.0	6		6			244		
SHSRQE245	248.5	7	7				249		
SHSRQE250	254.0	7	6	1			243		
SHSRQE255	259.5	7	5	2			242		
SHSRQE260	265.0	7	4	3			241		
SHSRQE265	270.5	7	3	4			240		
SHSRQE270	276.0	7	2	5	HK325S/ HK325T	1	239		
SHSRQE275	281.5	7	1	6			237		
SHSRQE280	287.0	7		7			236		
SHSRQE285	289.5	8	7	1			234		
SHSRQE290	295.0	8	6	2			233		
SHSRQE295	300.5	8	5	3			231		
SHSRQE300	306.0	8	4	4			228		
SHSRQE305	311.5	8	3	5			225		
SHSRQE310	317.0	8	2	6			223		
SHSRQE315	322.5	8	1	7			221		
SHSRQE320	328.0	8		8			219		

Indoor equipment

	Indoor unit	Concealed horizontal fan coil units (42CE, 42CN); 4-way cassette fan coil unit (42GWC); hi-wall fan coil unit (42CM), up to 128 units for each system
Other important components	Fresh air handling unit	Heat recovery fresh air handling unit (BFP) and fresh air handling unit (DBFP/DFP) , up to 8 units for each system
	Thermostat	Thermostat with networking function (CTC), 1 for each indoor unit
(Options	1. HMI (00PSY143780200); 2. Remote control (CTCIR01); 3. Manual stop value (00PPY141440200)

Selection restrictions:

All outdoor units must be models of the same type. (For example, cooling-only models cannot be combined with the heat pump unit.) The total number of outdoor units must not exceed 8.

Main Equipment Parameters

Technical parameters for outdoor unit

Heat pump unit

41

Model	Unit	30RQM025	30RQM030	30RQM035	30RQM040	30RQE035	30RQE040
Nominal cooling capacity	kW	24.5	28.9	33.9	39.2	35.5	41
Nominal heating capacity	kW	24.5	30	34.8	39.5	41.0	46.5
Power input for cooling	kW	7.3	8.8	10.1	12.2	11.6	13.3
Power input for heating	kW	7.8	9.4	10.9	12.2	12.4	13.8
Cooling EER	kW/kW	3.36	3.28	3.36	3.21	3.06	3.08
Heating COP (Coefficient of Performance)	kW/kW	3.14	3.19	3.19	3.24	3.31	3.37
*ARI Integrated Part-Load Value (IPLV)	kW/kW	5.93	5.86	5.96	5.84	5.29	5.49
Refrigerant				HFC-	410A		
Charge amount	kg	9	11	10.9	12.8	12.8	13.4
Compressor				Hermetic scro	Il compressor		
Quantity		2	2	2	2	2	2
Control system			Pro-dialo	g Plus microc	omputer contr	rol system	
Condenser		С	opper and alu	iminum/finnec	l coil with hyd	rophilic coatir	ıg
Fan quantity		1	1	1	1	1	1
Maximum fan speed	rpm	720	720	720	720	720	720
Air flow rate	L/S	2820	2820	3750	3750	3750	3750
Evaporator			E	Brazed plate h	eat exchange	r	
Nominal water flow rate (cooling)	m³/h	4.2	5	5.8	6.8	6.1	7.1
Nominal water flow rate (heating)	m³/h	4.2	5.2	6.0	6.8	7.1	8.0
Outdoor unit water pressure drop (including optional joints, cooling)	kPa	54	65	57	63	60	65
Outdoor unit water pressure drop (including optional joints, heating)	kPa	54	70	60	63	65	80
Maximum water pressure	kPa	1000	1000	1000	1000	1000	1000
Outdoor unit water-related components		Fil	ter, pressure g	auge, flow sv 2-way sole	vitch, automat enoid valve	ic air vent val	ve,
Inlet/outlet port (male thread)	MPT	1-1/4"	1-1/4"	1-1/2"	1-1/2"	1-1/2"	1-1/2"
Nominal diameter of water joint		DN32	DN32	DN40	DN40	DN40	DN40
Electrical parameters							
Mains power supply			380V/	400V-3Ph-50	Hz; 415V-3Ph	-50Hz	
Control power supply							
Nominal operating current (cooling)	А	13.9	16	18	23.2	21.2	24.3
Nominal operating current (heating)	А	14.9	16.8	18.6	23.5	22.7	25.3
MCA at 46 d.b OAT	А	17.1	20.6	22	27	26.5	29.5
Dimensions (L×W×H)	mm	990×75	5×1800	1240×80	60×1820	1240×86	60×1820
Net weight	kg	315	335	360	380	375	390
Noise level	dB(A)	62	62	64	64	64	64

Note: Cooling data is measured at an ambient temperature of 35°C DBT / 24°C WBT and inlet and outlet water temperatures of 12°C and 7°C respectively.

Heating data is measured at an ambient temperature of $7^{\circ}C$ DBT / $6^{\circ}C$ WBT and inlet and outlet water temperatures of $40^{\circ}C$ and $45^{\circ}C$ respectively.

*Please refer to AHRI condtions with Self adaptive variable water temperature technology ($6.7 \sim 13^{\circ}$ C)

Technical parameters for outdoor unit

	-	-	1	_
			4	
	ŧ			
	ŧ		4	
		-		
		-		
ACANTO	y.			

Cooling-only	unit			
			0000010000	
	Model	Unit	30RBM030	30RBM040
	Nominal cooling capacity	kW	29.2	39.5
	Power input power for cooling	kW	8.8	12.0
	Cooling EER (energy efficiency ratio)	kW/kW	3.32	3.29
	*ARI Integrated Part-Load Value (IPLV)	kW/kW	5.86	5.84
-	Refrigerant		HFC-	-410A
Malan	Charge amount	kg	10.0	12.0
	Compressor		Hermetic scro	oll compressor
6	Quantity		2	2
	Control system		Pro-Dialog Plus microc	omputer control system
	Condenser		Copper and aluminum fin c	oils with hydrophilic coating
	Fan quantity		1	1
	Maximum fan speed	rpm	720	720
	Evaporator		Brazed plate h	leat exchanger
	Nominal water flow rate (cooling)	m³/h	5.0	6.8
	Outdoor unit water pressure drop (including optional joints, cooling)	kPa	65	63
	Maximum water pressure	kPa	1000	1000
	Outdoor unit water-related components		Filter, pressure ga automatic air vent valve	auge, flow switch, e, 2-way solenoid valve
	Inlet/outlet port (male thread)	MPT	1-1/4"	1-1/2"
	Nominal diameter of water joint		DN32	DN40
	Electrical parameters			
	Mains power supply		380V/400V-3Ph-50Hz; 415V	/-3Ph-50Hz; 230V-3Ph-60Hz
	Control power supply		The built-in transformer conne	ects to the mains power supply
	Nominal operating current (cooling)	A	30.0	36.5
	MCA at 48°C d.b OAT	A	38.5	52.9
	Starting current	A	133	174
	Dimensions (L×W×H)	mm	990×755×1800	1240×860×1820
	Net weight	kg	310	360
	Noise level	dB(A)	62	64

*Please refer to AHRI conditions with Self adaptive variable water temperature technology (6.7 ~ 13°C)

Parameter modification table for high-external static pressure (ESP) unit

Model	Unit	30RQM025	30RQM030	30RQM035	30RQM040	30RBM030	30RBM040
Cooling power input @ maximum ESP	kW	7.8	9.3	10.76	12.86	9.3	12.7
Heating power input @ maximum ESP	kW	8.3	9.9	11.56	12.86	-	-
Nominal operating current (cooling) @ maximum ESP	A	14.8	17.7	19.2	24.5	17.6	24.2
Nominal operating current (heating) @ maximum ESP	A	15.9	18.2	19.6	24.6	-	-
Maximum ESP	Pa	85	85	100	100	85	100
High fan speed @ maximum ESP	rpm	960	960	960	960	960	960

Technical parameters for hydronic kit

Hydronic kit

			Single p	ump			Twin pun	np (100% sta	ndby)		
Model	HK030004000THC HK030006000THC	HK040004000THC HK040006000THC	HK080004000THC HK080006000THC	HK150S11 00001THC	HK210S11 00001THC	HK325S11 00001THC	HK150T01 00001THC	HK210T01 00001THC	HK325T01 00001THC		
Application	Single unit system Dual unit par system					Multi-unit para	illel system	llel system			
System cooling capacity range (heat pump unit)	25~30kW	25~40kW	25~80kW	25~150kW	25~210kW	25~320kW	25~150kW	25~210kW	25~320kW		
Nominal flow and hydrau- lic module external lift	5m ³ /h 250kPa	6.8m³/h 270kPa	13.6m³/h 250kPa	25m³/h 250kPa	35m ³ /h 270kPa	56m³/h 270kPa	25m ³ /h 250kPa	35m ³ /h 270kPa	56m ³ /h 270kPa		
Major components	VFD pump, diffe water replenishi expansion tank,	rential pressure ng valve, automatic relief	bypass valve, valve, filter, etc.	VFD pump, diffe valve, water rep expansion tank pressure >20m) etc.	erential pressur plenishing valve (excluded if sys , automatic rel	e bypass , stem endure lief valve, filter,	VFD pump, differential pressure bypass valve, water replenishing valve, expansion tank (excluded if system endure pressure >20m), automatic relief valve, filter, etc.				
Dimensions (L×W×H)		785×425×1075	5	1	312x608x1186		1404x798x1186	1462x87	′8x1186		
Nominal diamater of joint	DN32	DN40	DN50	DN65	DN80	DN100	DN65	DN80	DN100		
Bypass pipe connector				DN50	DN50	DN65	DN50	DN50	DN65		
Joint connection type		Male thread			Clamp			Clamp			
Expansion tank capacity	8	L	12L	35L	50L	80L	35L	50L	80L		
Main Power supply				380/40	0V-3Ph-50Hz						
Water pump quantity			1				2 (1	00% standby)		
Rated power	0.75	1.1	1.85	4	5.5	7.5	4	5.5	7.5		
Maximum operating current	1.9 A	2.4 A	5 A	8.2 A	10.9 A	14.5 A	7.7A	10.2A	13.7A		
Net weight	100kg	110kg	130kg	229kg	262kg	288kg	270kg	348kg	411kg		

Note: 1. Please refer to Design, Installation and Commissioning Manual for Aqua-flow™ VWV System for nomenclature and detailed specifications. 2. The standard pressure endurance of packaged VFD hydronic kits (HK 025-520) is 20 meter ; for HK 025-080, Carrier can offer 40 meter option; for HK150-520, Carrier can offer 60 meter option without expansion tank, which should be installed on the top of system lop and is purchased by customer or is supplied by Carrier.

42

Technical parameters for heat recovery fresh air handing unit

Heat recovery fresh air handling unit (BFP)

1													
							2-Row						
ł		Unit r	model		REP1	BEP1 5	BEP2	BEP2 5	BED3	RFP4	BEP5	BEP6	BEP8
	Airflow	0	CN	ЛН	1000	1500	2000	2500	3000	4000	5000	6000	8000
ł	74111044	Tu	00		1000	1300	2000	Coiling		4000	5000	0000	Horizontal
		Ty	pe	L (Do)	125	100	161		160	240	221	262	240
	Total	Fresh air	side-		266	105	251	265	252	40	265	440	417
	pressure			H (Pa)	266	233	251	205	253	425	305	449	41/
	at outlet	Air discha	irge 🔔	L (Pa)	128	84	90	107	103	244	205	284	141
		side		<u>H (Pa)</u>	174	234	244	168	217	312	386	428	317
	Heat	Sensible I	heat S	Summer/winter (%)	67.2/70.9	66.9/70.6	67.1/71.6	65.7/69.4	64.3/67.8	66.2/69.8	67.9/71.7	68.9/72.7	63.0/66.5
	exchange rate	Total he	eat S	Summer/winter (%)	53.3/62.8	53.3/62.4	53.7/63.4	52.2/61.4	51.3/60.2	52.6/61.8	53.8/63.5	54.5/64.3	<u>3 50.5/59.1</u>
		Eroob oir	aida	L(kW)	0.29	0.42	0.57	0.66	0.79	1.66	1.83	2.96	3.32
	Motor	Flesh all	side	H(kW)	0.41	0.42	0.63	0.82	1.11	1.83	1.99	3.14	3.66
	nput	Air discha	irae	L(kW)	0.16	0.31	0.39	0.57	0.66	1.54	1.75	2.08	2.5
	power	side		H(kW)	0.29	0.42	0.63	0.66	0.79	1.66	1.83	2.96	3.1
Ì	Total	Cooling can	acity	kW	10.3	159	21.9	26.5	31.2	42.4	55.3	68.2	92.7
	capacity	Heating cap	acity	kW	12.2	18.1	24.2	29.7	35	46.5	59.5	72.5	97.4
	Pocovory	Cooling cap	acity	kW	6	91	12.2	14.8	175	23.9	30.5	37.1	45.8
	canacity	Hosting cap	acity	kW	5	7.4	10	12.2	1/.3	10.6	25.2	30.6	27.5
	oupdony	Cooling con	acity		12	6.0	07	11 7	127	19.0	21.2	21 1	160
	Coil cooling/	Weter flow	rate		4.5	0.0	9./	2.01	15./	2 10.3	24.0	51.1 5.24	40.9
	heating	Wolf TIOW	rale	1/11	0./3	107	14.00	2.01	2.30	5.1ŏ	4.20	2.54	0.00
	capacity	Heating cap	acity	KVV T/L	1.2	10.7	14.2	1.5	20.7	26.9	34.3	41.9	59.9
		Water flow	rate	I/n	0.63	0.93	1.25	1.53	1.81	2.35	3	3.66	5.24
				LL (kg)	160	200	230	240	260	325	375	4/0	595
	Net	weight		LH (kg)	160	200	230	240	265	325	375	475	610
	Not	weight		HH (kg)	160	200	230	245	265	330	390	475	615
				HL (kg)	160	200	230	240	265	325	390	470	600
[4 Dow						
							4-n0w						
		Unit	model		BFP1	BFP1.5	BFP2	BFP2.5	BFP3	BFP4	BFP5	BFP6	BFP8
	Airflow		C	ИН	1000	1500	2000	2500	3000	4000	5000	6000	8000
		Ty	уре					Ceiling-	mounted				Horizontal
		Eroch oi	r oido	L(Pa)	111	161	131	82	122	203	275	316	196
	Iotal	Flesh al	side	H (Pa)	243	205	221	231	215	380	320	403	373
	pressure at outlet	A :		L (Pa)	128	84	90	107	103	244	205	284	141
	ai oullet	Air dischar	ge slae	H (Pa)	174	234	244	168	217	312	386	428	317
ł	Heat	Sensible	heat	Summer/winter (%	67.2/70.9	66.9/70.6	67.1/71.6	65.7/69.4	64.3/67.8	66.2/69.8	67.9/71.7	68.9/72.7	63.0/66.5
	exchange rate	Total h	eat	Summer/winter (%	53 3/62 8	3 53 3/62 4	53 7/63 4	52 2/61 4	51 3/60 2	52 6/61 8	53 8/63 5	54 5/64 3	50 5/59 1
	J	Total I	out		0.29	0.42	0.57	0.66	0.79	1 66	1 83	2 96	3 32
	Motor	Fresh ai	r side		0.23	0.42	0.57	0.00	1 1 1	1.00	1.00	3.1/	3.66
	input				0.41	0.42	0.37	0.52	0.66	1.05	1.55	2.08	2.5
	power	Air dischar	ge side		0.10	0.31	0.55	0.57	0.00	1.54	1.7.5	2.00	2.5
	Tatal	Cooling	no oitr		155	0.42	0.05	0.00	0.79	60.2	1.03	2.90	3.1 110.7
	IOTAI		apacity	KVV LAA/	10.0	23.5	21.2	30.2	45.2	60.2	70.5	00.0	125.0
	сарасну	Heating ca	apacity	KVV	16.4	24.2	32.3	39.9	47.4	62.7	/6.3	92.8	125.8
	Recovery	Cooling ca	apacity	KW	6	9.1	12.2	14.8	1/.5	23.9	30.5	3/.L	45.8
	capacity	Heating ca	apacity	KW	5	/.4	10	12.2	14.3	19.6	25.2	30.6	37.5
	Coil cooling	Cooling ca	apacity	kW	9.5	14.2	19.1	23.4	27.7	36.3	39.8	49./	/3.9
	heating	Water flow	w rate	T/h	1.64	2.43	3.28	4.01	4.76	6.24	6.84	8.53	12.7
	capacity	Heating ca	apacity	kW	11.4	16.8	22.3	27.7	33.1	43.1	51.1	62.2	88.3
	oupdony	Water flow	<i>w</i> rate	T/h	0.99	1.47	1.95	2.42	2.89	3.77	4.47	5.44	7.72
				LL (kg)	165	205	235	245	270	335	385	485	615
	N	twoicht		LH (kg)	165	205	235	250	270	335	390	490	630
	Ne	i weight		HH (kg)	165	205	235	250	275	340	400	485	635
				HL (kg)	165	205	235	250	270	335	400	485	620
l													
		Unit m	nodel		BFP1	BFP1.5	BFP2	BFP2.5	BFP3	BFP4	BFP5	BEP6	BFP8
		. L	L	mm	1450	1520	1610	1660	1750	1970	2130	2300	2430
	dimensio	t nns	W	mm	960	1120	1220	1180	1180	1370	1520	1710	1800
	uniensi		Н	mm	520	580	640	700	770	770	770	770	1220

wet film humidifier option of BFP

	Un	it model	BFP1R	BFP1.5R	BFP2R	BFP2.5R	BFP3R	BFP4R	BFP5R	BFP6R	BFP8R
	Air flow rate (CMH)			1500	2000	2500	3000	4000	5000	6000	8000
	Velocity of coil (m/s)			1.89	1.95	2.14	2.28	2.56	2.59	2.6	2.54
100	Sta	ture efficiency (%)	71	67	66	62	59	54	53	53	54
100mm	2 rows	capacity (kg/h)	9.9	14	18.7	21.8	24.9	31.1	39.9	48.8	62.1
vvet min	4 rows	capacity (kg/h)	12.4	17.6	23.4	27.7	32	39.9	50.5	57.8	80.1
	Air	drop (Pa)	15	20	20	24	28	35	36	36	35
	Weigh	t adder (kg)	6	8	11	12	14	16	20	24	33

build-out purifier option of BFP

Unit model	BFP1	BFP1.5	BFP2	BFP2.5	BFP3	BFP4	BFP5	BFP6	BFP8
Air flow rate	1000	1500	2000	2500	3000	4000	5000	6000	8000
Power source (V)				38	30V/3P/50F	Ηz			
Rated power (kW)	0.2	0.32	0.37	0.55	0.75	1.0	1.5	2.2	3.8
Input power (kW)	0.38	0.65	0.64	0.84	1.1	1.6	2.0	3.1	62.1
Current (A)	0.8	1.3	1.21	1.6	2.3	3.0	3.9	5.9	7.8
Primary filter level	G3	G3	G3	G3	G3	G3	G3	G3	G3
Medium filter level	F7	F7	F7	F7	F7	F7	F7	F7	F7
Weight (kg)	45	60	65	85	95	110	135	145	165
Width (mm)	431	635	635	822	1026	1230	1128	1230	1230
Length (mm)	1130	1200	1240	1280	1320	1360	1360	1480	1480
Height (mm)	480	480	582	582	582	582	684	684	871

Summertime calculations based on: outdoor conditions of 35°C DBT and 59.1% RH, indoor conditions of 27°C DBT and 50% RH, and inlet/outlet water temperature of 7°C/12°C.

Wintertime calculations based on: outdoor conditions of 5°C DBT and 60% RH, indoor conditions of 21°C DBT and 40% RH, and inlet/ outlet water temperature of 60°C/50°C.

Technical parameters for Fresh air handing unit

Fresh air handling unit (suspending AHU)

Model	Air flow rate (m³/h)	Width (unit + control box) ×length×height	Motor kW-pole	Input power (kW)	Fan /motor sets	ESP (Pa)	TP (Pa)	Cooling capacity (kW)	Chilled water flow rare(l/s)	Cooling WDP (Kpa)	Heating capacity (kW)	Hot water flow rate(l/s)	Heating WPD (Kpa)	Unit weight (kg)	Noise level (dB(A))
DBFPY1	1000	(690 + 154) x 096 x 290	0.175-4	0.34	1 /1	130	234	12.6	0.6	E 2 4	12.2	0.2	14.2	46	52
DBFPY1I	1000	(000+104)×900×000	0.275-4	0.44	1/1	220	321	12.0	0.0	55.4	15.2	0.5	14.2	47	55
DBFPY1.5	1000	(075 - 154)096290	0.275-4	0.44	1 /1	115	227	10	0.0	FO 4	10.0	0.5	12.2	53	55
DBFPY1.5I	1300	(0/5+154)×900×500	0.425-4	0.79	1/1	215	320	19	0.9	50.4	19.0	0.5	15.5	55	58
DBFPY2	2000	(972 - 150) - 096 - 500	0.35-4	0.63	1 /1	195	300	25.2	1 2	E 2 7	26.4	0.6	14.2	63	56.5
DBFPY2I	2000	(872+130)×986×300	0.55-4	0.84	1/1	280	381	25.5	1.2	55.7	20.4	0.0	14.2	64	59.5
DBFPY2.5	2500	(1018+150)~986~500	0.45-4	0.83	1/1	165	265	21	15	52.2	327	0.8	1/1 3	67	60
DBFPY2.5I	2300	(1010+130)~300~300	0.55-4	0.84	1/1	250	356	51	1.5	55.2	52.7	0.0	14.5	70	61
DBFPY3	2000	(1166+150)~086~500	0.65-4	1.09	1 /1	120	250	207	10	970	20.7	1	22 5	75	62
DBFPY3I	3000	(1100+130)×380×300	0.65-4	1.09	1/1	200	330	50.7	1.5	07.9	39.7	1	22.5	75	62
DBFPY4	4000	(1458+150)×986×500	0.35-4X2	0.63X2	2/2	185	300	53.4	26	86.8	535	13	21.1	108	58
DBFPY4I	4000	(1438+130)×380×300	0.55-4X2	0.84X2	2/2	250	381	55.4	2.0	00.0	55.5	1.5	21.1	112	61
DBFPY5	5000	(1752+150)×986×500	0.45-4X2	0.83X2	2/2	160	265	64 1	21	817	65.7	16	20.8	123	60.5
DBFPY5I	5000	(1/32+130)~300~300	0.55-4X2	0.84X2	2/2	250	356	04.1	5.1	01.7	05.7	1.0	20.0	127	61.5
DBFPY6	6000	(2044+150)×986×500	0.65-4X2	1.09X2	2/2	150	250	78 1	37	104	793	19	25.9	134	62.5
DBFPY6I		(20111130)300300	0.65-4X2	1.09X2	2/2	220	330	/0.1	5.7	101	/ 5.5	1.5	20.0	138	63.5
DBFPZ1	1000	(680+150)×986×380	0.175-4	0.34	1/1	90	234	15.8	0.8	44	15	04	9.8	49	52
DBFPZ1I	1000	(0001130)×300×300	0.275-4	0.44	1/1	175	321	15.0	0.0		15	0.4	5.0	50	55
DBFPZ1.5	1500	(875+150)×986×380	0.275-4	0.44	1/1	70	227	24	12	577	22.6	0.5	12.6	56	55
DBFPZ1.5I	1500	(0731130)	0.425-4	0.79	-/-	170	320	21		57.7	22.0	0.5	12.0	58	58
DBFPZ2	2000	(872+150)×986×500	0.35-4	0.63	1/1	160	300	31.4	15	46.8	30	07	10.6	67	56.5
DBFPZ2I	2000	(072 - 130) - 300 - 300	0.55-4	0.84	1/1	230	381	51.1	1.5	10.0	50	0.7	10.0	68	59.5
DBFPZ2.5	2500	(1018+150)×986×500	0.45-4	0.83	1/1	140	265	39.7	19	58.9	375	0.9	131	75	60
DBFPZ2.5I	2300	(1010 : 130)300300	0.55-4	0.84	1/1	210	356	55.7	1.5	50.5	57.5	0.5	10.1	75	61
DBFPZ3	3000	(1166+150)×986×500	0.65-4	1.09	1/1	85	250	49 5	24	101 1	45 5	11	21.1	81	62
DBFPZ3I	5000	(1100 · 130) · 300 · 300	0.65-4	1.09	-/-	150	330	15.5	2.1	101.1	13.5		21.1	81	62
DBFPZ4	4000	(1458+150)×986×500	0.35-4X2	0.63X2	2/2	150	300	65.5	31	81.6	60 5	15	17.2	115	58
DBFPZ4I	-000	(1430 + 130) ~ 300 ~ 300	0.55-4X2	0.84X2	2/2	215	381	05.5	5.1	01.0	00.5	1.5	17.2	119	61
DBFPZ5	5000	(1752+150)×986×500	0.45-4X2	0.83X2	2/2	120	265	80.4	3.8	76 5	74.8	18	16.4	129	60.5
DBFPZ5I	5000	(1, 02 - 100)	0.55-4X2	0.84X2	2,2	210	356	00.1	5.0	, 0.5	, 1.0	1.0	10.1	133	61.5
DBFPZ6	6000	(2044+150)×986×500	0.65-4X2	1.09X2	2/2	115	250	98.7	47	109.9	90.5	22	22.8	142	62.5
DBFPZ6I			0.65-4X2	1.09X2	-, -	185	330	55.7	/	200.0	5 5.5			146	63.5

Rated condition: Cooling- entering air temperature of 35°C DBT and 28°C WBT; entering water temperature of 7°C.

Heating- entering air temperature of 7°C DBT; entering water temperature of 60°C. leaving temperature difference of 50°C.

Note: 1. Connect position- left connect, when it comes to face inlet vent and the coil connector is on the left of AHU;

opposition is right connect

2. Related model with Y means rated capacity unit, model with Z means high capacity unit, model with I means high ESP unit.

3. Input power means total input power by unit level.

:	Model	Width (unit + control box) *length*height	Air flow rate (m ³ /h)	ESP (Pa)	TP (Pa)	Input power (kW)	Unit weight (kg)	Noise level (dB(A))
	DFPY2	(1019+154) 20962290	2000	95	297	0.79×1	65	58.2
	DFPZ2	(1010+134) ~300~300	2000	65	297	0.79×1	67	58.2
	DFPY3	(1459,154),096,290	3000	130	320	0.79×2	92	58.5
	DFPZ3	(1430+134) × 900×300	3000	100	320	0.79×2	95	58.5
	DFPY4	(1752,154),.096,.290	4000	85	297	0.79×2	105	60
	DFPZ4 (1752+154) ×986×3		4000	55	297	0.79×2	109	60

Note: 1. Unit capacity refer to DBFP(X) w/ same air flow rate.

2. Related model with Y means rated capacity unit, model with Z means high capacity unit.

3. Input power means total input power by unit level.

Technical parameters for air conditioner terminals

	2-row unit parameters				3-row unit parameters												
	Performance	Model	002	003	004	005	006	008	002	003	004	005	006	008	010	012	014
4205		High	340	530	700	880	1020	1430	340	510	680	850	1020	1360	1700	2040	2380
420E	Rated airflow rate m ³ /h	Mid	270	420	560	700	810	1140	265	405	535	680	790	1060	1360	1595	1904
		Low	200	310	420	520	610	850	195	305	405	510	585	790	1020	1180	1428
	Cooling capac	ity W	1900	2820	3640	4500	5400	7200	2300	3200	4150	5000	6200	8100	9800	11500	13500
	Heating capaci	ity W	3100	4400	5820	6900	8400	11160	3600	5100	6450	7870	9300	12500	15200	17200	20500
		12 Pa	32	46	56	75	94	134	32	46	56	75	94	134	150	180	225
	Input power W	30 Pa	40	54	72	87	102	155	40	52	72	87	102	155	172	210	240
		50 Pa	46	65	84	98	112	174	46	63	84	98	112	174	195	236	290
	NI	12 Pa	36	38	41	43	45	46	36	38	41	43	45	46	47	50	51
	dB(A)	30 Pa	40	41	44	46	47	48	40	41	44	46	47	48	49	51	53
		50 Pa	42	44	46	47	49	50	42	44	46	47	49	50	51	53	54
	Electric heater	Quantity			1			2		,	1			2	2	2	2
	Licethe fielder	Power W	1000	1200	1500	1800	2200	1200	1000	1200	1500	1800	2200	1200	1500	1800	2200
	Net weight	kg	12.7	14.2	16.1	17.4	18.5	25.8	13.4	14.9	16.9	18.2	19.5	26.9	29.5	33.6	39.5
		L	890	970	1090	1170	1410	1650	890	970	1090	1170	1410	1650	1770	2010	2250
	Outline dimensions mm	W			46	6							466				
		Н			23	0			230								
	Options			Re	eturn ai	r plenu	n		Return air plenum								
		2-rov	v unit	paran	neters	6			3-row unit parameters								
	Performance	Model	002	003	004	005	006	008	002	003	004	005	006	008	010	012	014
		High	340	530	700	880	1020	1430	340	510	680	850	1020	1360	1700	2040	2380
	Rated airflow	Mid	270	420	560	700	810	1140	265	405	535	680	790	1060	1360	1595	1904
		Low	200	310	420	520	610	850	195	305	405	510	585	790	1020	1180	1428
	Cooling capac	ity W	1900	2820	3640	4500	5400	7200	2300	3200	4150	5000	6200	8100	9800	11500	13500
	Heating capac	city W	3100	4400	5820	6900	8400	11160	3600	5100	6450	7870	9300	12500	15200	17200	20500
42CN	Input power	12Pa	32	46	56	75	94	134	32	46	56	75	94	134	150	180	225
	(AC)	30Pa	42	54	72	87	106	155	42	52	72	87	106	155	172	210	240
	W	50Pa	46	65	84	98	116	174	46	63	84	98	116	174	195	236	290
	Input power	12Pa	18	23	33	45	54	64	18	23	33	45	54	64	88	116	/
	(DC)	30Pa	22	32	45	57	66	75	22	32	45	57	66	75	111	146	/
	VV	50Pa	30	45	63	72	88	115	30	45	63	72	88	115	121	/	/
		12Pa	34	36	38	42	44	43	34	36	38	42	44	43	46.5	48.5	48.5
	Noise level dB(A)	30Pa	37.5	39.5	41.5	43.5	44.5	46	37.5	39.5	41.5	43.5	44.5	46	48.5	49.5	51
		50Pa	41	43	44.5	45.5	46.5	47.5	41	43	44.5	45.5	46.5	47.5	50	50.5	52
	Electric heater	Quantity			1			2			1				2		2
	Licouro ricatel	Power W	1000	1200	1500	1800	2200	1200	1000	1200	1500	1800	2200	1200	1500	1800	2200
	Net weight	kg	12.7	14.2	16.1	17.4	18.5	25.8	13.4	14.9	16.9	18.2	19.5	26.9	29.5	33.6	39.5
		L	890	970	1090	1170	1410	1650	890	970	1090	1170	1410	1650	1770	2010	2250
	Outline almensions mm	W			4	66							466				
		н			2	30							230				
	Options	3		F	leturn a	ir plenu	ım					Retu	rn air p	lenum			

Note: The performance data in the table is measured at a high airflow rate with corresponding residual pressure.

Cooling capacity is measured at an inlet cold water temperature of 7°C, inlet air temperature of 27°C DBT/19.5°C WBT, and inlet-outlet temperature difference of 5°C.

Heating capacity is measured at an inlet hot water temperature of 60°C, inlet air temperature of 21°C DBT, and the same water flow as for cooling.

Noise level is measured at a location 1m from both the front and bottom of the unit in a semi-anechoic room.

The electric heater applies only to the units with this option.

High ESP IDU (suspending AHU)

Model	Air flow rate (CMH)	Width (unit + control box) *length*height	Input power (KW)	ESP (Pa)	TP (Pa)	Cooling capacity (kw)	Cooling WDP (Kpa)	Heating capacity (kw)	Heating WPD (Kpa)	Unit weight (kg)	Noise level (dB(A))
DBFP1	1000	(690 + 154)+ 096+ 290	0.34	130	234	5.0	10.1	11.0	11.0	46	52
DBFP1I	1000	(000+154)×900×500	0.44	220	321	5.0	10.1	11.2	11.3	47	55
DBFP1.5	1500	(975 1154) 20962290	0.44	115	227	70	14.5	17.0	17.2	53	55
DBFP1.5I	1500	(075+154)×900×500	0.79	215	320	7.0	14.5	17.0	17.5	55	58
DBFP2	2000	(972) 150) 2082500	0.63	195	300	11.1	22.0	22.0	24.1	63	56.5
DBFP2I	2000	(872+130)×980×300	0.84	280	381	11.1	22.0	23.0	24.1	64	59.5
DBFP2.5	2500	(1019,150),096,500	0.83	165	265	12.0	25.9	20.7	20.1	67	60
DBFP2.5I	2500	(1010+150)×960×500	0.84	250	356	13.9	25.6	20.7	20.1	70	61
DBFP3	2000	(1166, 150), 096, 500	1.09	120	250	16.0	20.0	24.0	32.4	75	62
DBFP3I	3000	(1100+150)×960×500	1.09	200	330	10.9	30.0	34.8		75	62
DBFP4	4000	(1459, 150), 2086, 500	0.63X2	185	300	22.1		45.7	30.0	108	58
DBFP4I	4000	(1430+150)×900×500	0.84X2	250	381	22.1	20.3		30.9	112	61
DBFP5	5000	(1750, 150), 096, 500	0.83X2	160	265	28.0	120	58.2	45.6	123	60.5
DBFP5I	5000	(1752+150)×960×500	0.84X2	250	356	20.9	43.0		45.0	127	61.5
DBFP6	6000	(2044 + 150) 2086 2500	1.09X2	150	250	34.5	57.0	60.5	50.5	134	62.5
DBFP6I	0000	(2044+150)29802500	1.09X2	220	330		57.2		55.5	138	63.5
DBFPX1	1000	(690,1150),096,2990	0.34	90	234	6.4	0.2	12.0	0.0	49	52
DBFPX1I	1000	(000+130)×980×380	0.44	175	321		0.3	13.0	0.2	50	55
DBFPX1.5	1500	(975 1150) 20062290	0.44	70	227	10.0	10.9	10.6	10.7	56	55
DBFPX1.5I	1500	(872+120)×986×380	0.79	170	320	10.0		19.0	10.7	58	58
DBFPX2	2000	(970 - 150)096500	0.63	160	300	10.7		26.0		67	56.5
DBFPX2I	2000	(072+150)×900×500	0.84	230	381	12.7	0.0	20.0	0.2	68	59.5
DBFPX2.5	2500	(1019,150),096,500	0.83	140	265	16.1	10.0	22.6	10.0	75	60
DBFPX2.5I	2500	(1010+150)×960×500	0.84	210	356	10.1	18.8	32.0	10.9	75	61
DBFPX3	2000	(1166, 160), 006, 600	1.09	85	250	20.0	00.0	20.0	15.0	81	62
DBFPX3I	3000	(1100+150)×960×500	1.09	150	330	20.2	20.3	39.2	15.0	81	62
DBFPX4	4000	(1459, 150), 2096, 500	0.63X2	150	300	27.2	21.2	52.6	22.6	115	58
DBFPX4I	4000	(1430+150)×900×500	0.84X2	215	381	27.2	31.3	.3 52.6	23.6	119	61
DBFPX5	5000	(1752, 150), 096, 500	0.83X2	120	265	27.0	61.5	67.0	52.0	129	60.5
DBFPX5I	5000	(1752+150)×900×500	0.84X2	210	356	37.0	C.10		52.8	133	61.5
DBFPX6	6000	(2044 + 150) + 096 + 500	1.09X2	115	250	44.0	66.0	00.0	57.0	142	62.5
DBFPX6I	6000	(2044+130)×900×500	1.09X2	185	330	44.0	0.00	00.2	57.0	146	63.5

Rated condition: Cooling- entering air temperature of 27°C DBT and 19.5°C WBT; entering water temperature of 7°C, entering and leaving temperature difference of 5°C.

Heating- entering air temperature of 15°C DBT; entering water temperature of 60°C. entering and leaving temperature difference of 10°C.

Note: 1. Connect position- left connect, when it comes to face inlet vent and the coil connector is on the left of AHU;

opposition is right connect

2. Related model with X means high capacity unit, model with I means high ESP unit..

3. Input power means total input power by unit level.

Model	Width (unit + control box) *length*height	Air flow rate (CMH)	ESP (Pa)	TP (Pa)	Input power (KW)	Input power (KW)	Noise level (dB(A))
DFP2	(1010 + 154) + 000 + 200	2000	95	297	0.79×1	65	58.2
DFPX2	(1010+154)×900×300	2000	65	297	0.79×1	67	58.2
DFP3	(1459, 154), 096, 290	3000	130	320	0.79×2	92	58.5
DFPX3	(1430+134)×900×300	3000	100	320	0.79×2	95	58.5
DFP4	(1750, 154), 096, 290	4000	85	297	0.79×2	105	60
DFPX4	(1752+154)×900×300	4000	55	297	0.79×2	109	60

Note: 1. Unit capacity refer to DBFP(X) w/ same air flow rate.

2. Related model with X means high capacity unit, model with I means high ESP unit..

3. Input power means total input power by unit level.

Casette type fan coil unit(42GWC)

Performance	Model	003	004	005	006	008	010	012	014
Potod oir flow	High	540	680	850	1020	1360	1700	2040	2380
rate	Mid	430	540	680	810	1080	1300	1570	1830
m³/h	Low	350	440	550	660	880	1010	1210	1410
Cooling capacity	W	3200	3700	5800	6600	8700	9100	10900	12600
Heating capacity	W	4900	5800	9000	10200	13500	13700	16300	18900
Input power	(AC)W	35	48	50	60	102	150	160	190
Input power	(DC)W	14	25	22	28	50	/	1	1
Noise level	dB(A)	35/ 32/ 29	40/ 35/ 31	35/ 31/ 27	37/ 33/ 29	45/ 40/ 35	48 /45 /41	50 /47 /44	52 /49 /46
Panel dimensi	ons mm	720'	*720	960*960			1050*1050		
Unit dimensions mm		575 [°] *2	575*575 *298		825*825 *298		930*930*290)
Panel weigh	nt kg	2.5	2.5	5.0	5.0	5.0	6.5	6.5	6.5
Unit weight kg		16.5	16.5	37.0	37.0	39.6	43.5	43.5	43.5

Note: 1. The performance data in the table is measured at a high airflow rate.

 Cooling capacity is measured with an inlet cold water temperature of 7°C, inlet air temperature of 27°C DBT and 19.5°C WBT, and inlet-outlet temperature difference of 5°C. Heating capacity is measured at an inlet hot water temperature of 60°C, inlet air temperature of 21°C DBT, and inlet-outlet temperature difference of 10°C.

3. Noise level is measured at a location 1m from both the front and bottom of the unit in a semi-anechoic room.

Hi-wall fan coil unit (42CM)

Performance	Model	002	003	004	005
	High	360	510	700	850
flow rate	Mid	300	370	450	740
111-771	Low	230	290	375	570
Cooling capacity	W	1980	2950	3700	5100
Heating capacity	W	3000	4450	5550	7650
Input power	(DC)W	15	20	25	32
Noise level	dB(A)	36/ 33/ 30	39/ 35/ 31	41/ 36/ 32	43/ 39/ 35
Outline dimensions	876*22	28*300	1063*240*310		
Unit weight kg	12	13	16	16	

Note: 1. The performance data in the table is measured at a high airflow rate.

- 2. Cooling capacity is measured with an inlet cold water temperature of 7°C, inlet air temperature of 27°C DBT and 19.5°C WBT, and inlet-outlet temperature difference of 5°C. Heating capacity is measured at an inlet hot water temperature of 60°C, inlet air temperature of 21°C DBT, and inlet-outlet temperature difference of 10°C.
- 3. Noise level is measured at a location 1m from both the front and bottom of the unit in a semi-anechoic room.

Technical parameters for controller

Model	Integrated installation: HSM7IPRTA	Flush mounted installation: HSM7RPKTA				
Name	Intelligent system manager					
Dimensions (W×H×D)	300×250×120 mm 215×175×60 mm					
Rated power supply 220~240V ± 10%/1ph/50-60Hz						
Appearance	7' color LCD touch screen with graphical display in Chinese and English					
Basic functions Controllable components: up to 8 outdoor units, 4 heat recovery fresh air handling units, 128 indoor units and 1 hydronic kit						
Advanced functions Zone control, schedule control, pump VFD control, self adaptive variable water temperature control fresh air unit CO ₂ concentration control, energy metering function						
Network connection TCP/IP (connected to LAN and controlled via a web browser) and BAC-Net (connected to building automation control system)						

25:1

2531

Model	CTC100/200BR	CTC100/200GR	CTC100/200SR					
Color	Black	Gold	Silver					
Name		Indoor thermostat						
Dimensions (W×H×D)		86×86×40 mm						
Rated power supply	CTC100: AC 220 ~ 242V, 50/	CTC100: AC 220 ~ 242V, 50/60Hz CTC200: DC 12V (DC brushless fan-coil unit only)						
Appearance	LED bac	LED back light, soft key, graphical display in English						
Basic functions	On/Off; Operating mode selection speed setting; Temperature settin CTC100 applied for 2 pipes, 2 pi CTC200 applied for 2 pipe, and 2	On/Off; Operating mode selection; Cool, heat, Ventilation, Dehumidify; Sleep mode setting; Wind speed setting; Temperature setting CTC100 applied for 2 pipes, 2 pipes + E-heater, floor heating, and floor heating + 2 pipes CTC200 applied for 2 pipe, and 2 pipe + E-heater						
Advanced functions	Real-time clock s	Real-time clock setting; Weekly timer setting; User parameter setting						
Network connection		CCN port						
Options		Wireless remote control: CTCIR01						

Model	30RBM90E003			
Name	Repeater			
Dimensions (WxHxD)	70x120x25mm			
Rated power supply	Build-in power adapter,220V-240V+/-10%1P,50-60Hz			
Shell material	ABS plastic			
Basic function	Enhance the signal between thermostats and system manager Suggestion: add one repeater per 400 meter control line or per 40 thermostats			

Carrier air-conditioner milestones

1952 Carrier develops the first residential central air conditioning system.

1955 Carrier, an early first champion of energy conservation, develops the first automatic variable airflow supply fan, controlled by system pressure.

1992

Carrier develops the cone diffuser for eco-friendly refrigerant. Used in a positive-pressure environment, it improves the efficiency of the centrifugal compressor by reducing loss in the diffusion section.

1994

Carrier adopts the patented expansion turbine technology in its centrifugal water chillers to replace conventional throttle technology used by the rest of the industry. Carrier receives the Energy Saver Award from the US Department of Energy.

1911

Dr. Carrier publishes his basic principles of temperature and humidity control, which later evolved into his "Rational Psychrometric Formulae" paper and laid the foundation for modern air conditioning calculation.

1922

Carrier develops the first centrifugal water chiller, now displayed at the Washington State Museum.

1945

Carrier produces the world's first lithium bromide absorption chiller.

1972

Carrier manufactures the first centrifugal water chiller with single unit cooling capacity of 10,000 RTH.

1985

Carrier invents the pate electronic expansion valve, which improves the performance of wate chillers, reduces unnece superheat via accurate adjustment, and enhance efficiency at part-load conditions.

1982

Carrier introduces the first centrifugal water chiller with a titanium heat exchange pipe, completely overcoming pipe corrosion issues.

2002

Carrier and its industry peers jointly celebrate the 100 anniversary of Wills H. Carrier's invention of air conditioning.

2005 Carrier globally launches Starfire, the 30RB/RQ large air-cooled scroll chiller/heat pump that is the first to use the eco-friendly refrigerant

HFC-410A .

2006

2008

Carrier globally launches the AquaForce

water chiller, using HFC energy efficiency.

construction industry's Gold Energy-saving

It is also honored with the Chinese

Air Conditioning Product Award

2010

grade 1 or 2.

2009

rrier launches 23XRV, the world's first

Carrier brings the 30XQ air-cooled screw heat pump to market.Carrier introduces the NGA air-cooled scroll water chiller/heat pump. Carrier launches the 30XW water-cooled screw chiller, with models ranging from 133 RTH o 500 RTH, all of which achieve China's national energy efficiency

variable-irequency wat achieving 40% higher energy efficiency than the industry standard by combining a 3-rotor screw compressor with leading inverter technologies

grief than dard or or tere

2011

The AdvanTE³C Solutions Center is established in Shanghai, gathering experts in energy efficiency and environment protection from across the globe to engage in research and development of sustainable building solutions.

2013 Innovative Carrier AquaFlow™ VWV System

Carrier establishes a global strategic alliance with Toshiba Corporation to e

1999

alliance with Toshiba Corporation to engage in technology research and develop new residential and commercial air-conditioning products.

1996

Carrier launches the 30HXC water-cooled screw chiller and the 30GX air-cooled screw chiller, fully adopting the ecofriendly chlorine-free refrigerant HFC-134a.

It also launches a compact new centrifugal chiller with the latest centrifugal compression technology and HFC-134a refrigerant to achieve improved COP.

Carrier launches the 19XRD twin-compressor centrifugal

We make the world a better place to live. We create comfortable, efficient, healthy, safe and secure environments, and ensure the global food supply is transported and preserved for safe consumption.

